Introduction

Importance of VOC Quantification

- Health issue: Toxicity of volatile organic compounds (VOCs) and their atmospheric photochemical reaction products
- Air quality issues: Ozone formation and secondary organic aerosol (SOA) formation

Labile VOC and SVOC Quantification – Difficulties

- Most of the conventional quantification methods for VOCs are offline, so a sample storage medium is required.
- Loss of labile VOCs and SVOCs which occur during sample collection leads to understimation of the target compounds concentration.
- Derivatization product of acrolein in a 2,4-dinitrophenylhydrazine (DNPH) cartridge (acidified) is known to be unstable.
- Naphthalene is known to have significant loss in a Tedlar bag.

PTR-MS – Advantages and Disadvantages

Advantages
- Online analysis eliminates need for sample collection or derivatization.
- Provides second-by-second concentration profiles, which are useful for evaluating impacts of control technologies that reduce toxic VOC emissions.
- Does not require an authentic standard of the compounds of interest. This is a great advantage in the analysis for compounds without any reliable standard due to their toxicity or stability.

Disadvantages
- Linearity range of the PTR-MS was found to be up to ~700 ppbv of total reactive VOC, but peak VOC concentrations for vehicle tests typically reach the ppmv level.
- PTR-MS may be saturated for some cold start or hard acceleration episodes during transient chassis dynamometer testing, and saturation will cause underestimation of the target compounds.
- Gas dilution upgrade is developed in collaboration with the PTR-TOF 8000 manufacturer, Ionicon Analytik Ges.m.b.H.
- Ionicon PTR-Manager software is upgraded to monitor flows from all additional flow controllers and a meter.

Objectives

- Develop a gas dilution unit to upgrade the PTR-TOF 8000 for exhaust analysis.
- Compare measurements of benzene, toluene, ethylbenzene, and xylene (BTEX) in automotive exhaust using the PTR-MS with measurements utilizing ARB’s conventional GC-FID method (SOP MLD 102/103) to verify potential automotive applications.
- Conduct preliminary correlation analyses of real-time emission profiles from the PTR-MS and real-time profiles of engine parameters to assess sensitivity and responsiveness of the PTR-MS to engine and emission control events.

Experimental Methods – Vehicle Test Setup

- 17 automotive vehicle exhaust samples from chassis dynamometer tests were analyzed.
- Test cycles include Unified Cycle (UC), Federal Test Procedure (FTP), and Supplemental FTP which consists of 3 phases, 3 phases, and 1 phase, respectively.
- PTR-MS was configured for online analysis. (1 second resolution; H3O+ primary ion)
- GC-FID was carried out with offline analysis on samples collected in Tedlar bags; one bag sample was generated for each phase of a vehicle test.

Comparison of the Measurements between PTR-MS and GC-FID

- When the PTR-MS was saturated, the primary ion (H3O+) was depleted significantly as shown with red circles in the figure below.
- PTR-MS was not set to automatically synchronize with the bag sampling device and the emission analyzers, so manual data coordination was necessary.
- Synchronization was accomplished by aligning the peak pattern of the PTR-MS TIC and the total hydrocarbon (THC) measurements from the THC analyzer.
- Xylene and ethylbenzene concentrations from the GC-FID measurements were converted for comparison with the PTR-MS measurements, because those isomers cannot be distinguished in the PTR-MS analysis.
- The agreement between the measurements from two methods for BTEX were within 15 % for concentrations above 4 ppbv.

Examples of Automotive Applications of Real-Time VOC Emission Analysis

- Develop methods for quantifying labile VOCs and SVOCs including acrolein, 1,3-butadiene, and naphthalene.
- Study different primary ions (O2+, NO+, and NO2+) for their applications in mobile source toxic compounds analysis.

Future Study

- The PTR-MS was upgraded with a gas dilution unit for exhaust testing.
- The agreement between the GC-FID and the PTR-MS measurements for BTEX was within 15 % for concentrations above 4 ppbv.
- PTR-MS enables real-time measurements of selected exhaust VOC emissions which permits evaluation of engine and control technology events.

Summary

- Investigate potential errors introduced by real-time flow changes during vehicle test.
- Develop methods for quantifying labile VOCs and SVOCs including acrolein, 1,3-butadiene, and naphthalene.
- Study different primary ions (O2+, NO+, and NO2+) for their applications in mobile source toxic compounds analysis.

Acknowledgement

- Ionicon Analytik Ges.m.b.H. for technical supports and helpful discussions.
- HSL test cell 3 staff members (ECARS, CARB) for performing vehicle tests.
- Dr. Christopher Brandow (formerly with ECARS, CARB) for NMHC analysis.