The world's leading PTR-MS company

Ultra-Sensitive Real-Time Trace Gas Analyzers  •  Modular TOF-MS for Research & OEM

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 2 results
Title [ Year(Asc)]
Filters: Author is Dhooghe, Frederik  [Clear All Filters]
2010
[Demarcke2010a] Demarcke, M., C. Amelynck, N. Schoon, F. Dhooghe, J. Rimetz-Planchon, H. Van Langenhove, and J. Dewulf, "Laboratory studies in support of the detection of biogenic unsaturated alcohols by proton transfer reaction-mass spectrometry", International Journal of Mass Spectrometry, vol. 290, no. 1: Elsevier, pp. 14–21, 2010.
Link: http://www.sciencedirect.com/science/article/pii/S1387380609003558
Abstract
The effect of the ratio of the electric field to the buffer gas number density (E/N) in the drift tube reactor of a proton transfer reaction-mass spectrometer (PTR-MS) on the product ion distributions of seven common biogenic unsaturated alcohols (2-methyl-3-buten-2-ol, 1-penten-3-ol, cis-3-hexen-1-ol, trans-2-hexen-1-ol, 1-octen-3-ol, 6-methyl-5-hepten-2-ol and linalool) has been investigated. At low E/N values, the dominant product ion is the dehydrated protonated alcohol. Increasing E/N results in more extensive fragmentation for all compounds. For cis-3-hexenol and 6-methyl-5-hepten-2-ol the contribution of the protonated molecule can be enhanced by reducing E/N with respect to commonly used PTR-MS E/N values (120–130 Td). Significant differences have been found between some of the isomeric species studied, opening a way for selective detection. The C10 alcohol linalool mainly results in product ions at m/z 137 and 81, which are also PTR-MS fingerprints of monoterpenes. This may complicate monoterpene quantification when linalool and monoterpenes are simultaneously present in sampled air. Furthermore the influence of the water vapour pressure in the PTR-MS inlet line on the product ion distributions has been determined. Some major fingerprint ions of the unsaturated alcohols were found to depend significantly on the water vapour pressure in the inlet line and this should be taken into account for accurate quantification of these species by PTR-MS.
2009
[Demarcke2009] Demarcke, M., C. Amelynck, N. Schoon, F. Dhooghe, H. Van Langenhove, and J. Dewulf, "Laboratory studies in support of the detection of sesquiterpenes by proton-transfer-reaction-mass-spectrometry", International Journal of Mass Spectrometry, vol. 279, no. 2: Elsevier, pp. 156–162, 2009.
Link: http://www.sciencedirect.com/science/article/pii/S1387380608004351
Abstract
The effects of the ratio of the electric field strength to the buffer gas number density (E/N) in the drift tube of a proton transfer reaction mass spectrometer on the product ion distributions of the sesquiterpenes β-caryophyllene, α-humulene, α-cedrene and longifolene have been investigated.Chemical ionization of the sesquiterpenes resulted in important fragmentation of the nascent excited ion/molecule complex at the highest E/N values. The most important fragment ions were common to all sesquiterpenes and therefore cannot be used as fingerprints for specific isomers. The yield of the protonated molecule increased on average by a factor 1.6 by decreasing E/N from 140 to 80 Td. Taking into account the influence of E/N on the reaction time and on the reactant ion mobility, it is estimated that this decrease in E/N may lead to an overall increase in the PTR-MS detection sensitivity of sesquiterpenes (based on the ion signal at m/z 205) by a factor 3.5.Product ion distributions of α-cedrene and longifolene have also been determined at different water vapour pressures. No substantial influence of the water vapour pressure on the product ion yields was observed, which is an advantage when quantifying sesquiterpenes by PTR-MS in samples of varying relative humidity.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.