The world's leading PTR-MS company

Ultra-Sensitive Real-Time Trace Gas Analyzers  •  Modular TOF-MS for Research & OEM


You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!


Found 2 results
Title [ Year(Asc)]
Filters: Author is Shimono, Akio  [Clear All Filters]
[1667] Inomata, S., H. Tanimoto, Y. Fujitani, K. Sekimoto, K. Sato, A. Fushimi, H. Yamada, S. Hori, Y. Kumazawa, A. Shimono, et al., "On-line measurements of gaseous nitro-organic compounds in diesel vehicle exhaust by proton-transfer-reaction mass spectrometry", Atmospheric Environment, vol. 73, pp. 195–203, Jul, 2013.
<p>Nitro-organic compounds, some of which cause adverse health effects in humans, are emitted in diesel engine exhaust. Speciation and quantification of these nitro-organic compounds in diesel engine exhaust particles have been extensively conducted; however, investigations into the emissions of gaseous nitro-organic compounds in diesel engine exhaust have not. In the present study, the properties of gaseous nitro-organic compounds in diesel engine exhaust were investigated through time-resolved measurement with a proton-transfer-reaction mass spectrometer and a chassis dynamometer. Three diesel trucks were tested, each with a different type of exhaust-gas treatment system (i.e., aftertreatment). Among the nitro-organic compounds detected, the emission of nitromethane was commonly observed and found to be related to the emissions of carbon monoxide, benzene, and acetone. The emission of other nitro-organic compounds, such as nitrophenol, depended on the vehicle, possibly due to the type of aftertreatment installed.</p>
[Knighton2007a] W Knighton, B., S. C. Herndon, J. H. Shorter, R. C. Miake-Lye, M. S. Zahniser, K. Akiyama, A. Shimono, K. Kitasaka, H. Shimajiri, and K. Sugihara, "Laboratory evaluation of an aldehyde scrubber system specifically for the detection of acrolein.", J Air Waste Manag Assoc, vol. 57, no. 11: MT 59717, USA., pp. 1370–1378, Nov, 2007.
We demonstrate the use of an aldehyde scrubber system to resolve isobaric aldehyde/alkene interferences in a proton transfer reaction mass spectrometer (PTR-MS) by selectively removing the aldehydes from the gas mixture without loss of quantitative information for the alkene components. The aldehyde scrubber system uses a bisulfite solution, which scrubs carbonyl compounds from the gas stream by forming water-soluble carbonyl bisulfite addition products, and has been evaluated using a synthetic mixture of acrolein and isoprene. Trapping efficiencies of acrolein exceeded 97%, whereas the transmission efficiency of isoprene was better than 92%. Quantification of the PTR-MS response to acrolein was validated through an intercomparison study that included two derivatization methods, dinitrophenylhydrazine (DNPH) and O-(4-cyano-2-ethoxybenzyl)hydroxylamine (CNET), and a spectroscopic method using a quantum cascade laser infrared absorption spectroscopy (QCL) instrument. Finally, using cigarette smoke as a complex matrix, the acrolein content was assessed using the scrubber and compared with direct QCL-based detection.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:


Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.


Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics


Download the latest version of the IONICON publication database as BibTeX.