The world's leading PTR-MS company

Ultra-Sensitive Real-Time Trace Gas Analyzers  •  Modular TOF-MS for Research & OEM

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 59 results
Title [ Year(Desc)]
Filters: Author is Gasperi, Flavia  [Clear All Filters]
2013
[Morisco2013] Morisco, F., E. Aprea, V. Lembo, V. Fogliano, P. Vitaglione, G. Mazzone, L. Cappellin, F. Gasperi, S. Masone, G. Domenico { De Palma}, et al., "Rapid "breath-print" of liver cirrhosis by proton transfer reaction time-of-flight mass spectrometry. A pilot study.", PLoS One, vol. 8, no. 4: Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy. filomena.morisco@unina.it, pp. e59658, 2013.
Link: http://dx.doi.org/10.1371/journal.pone.0059658
Abstract
The aim of the present work was to test the potential of Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) in the diagnosis of liver cirrhosis and the assessment of disease severity by direct analysis of exhaled breath. Twenty-six volunteers have been enrolled in this study: 12 patients (M/F 8/4, mean age 70.5 years, min-max 42-80 years) with liver cirrhosis of different etiologies and at different severity of disease and 14 healthy subjects (M/F 5/9, mean age 52.3 years, min-max 35-77 years). Real time breath analysis was performed on fasting subjects using a buffered end-tidal on-line sampler directly coupled to a PTR-ToF-MS. Twelve volatile organic compounds (VOCs) resulted significantly differently in cirrhotic patients (CP) compared to healthy controls (CTRL): four ketones (2-butanone, 2- or 3- pentanone, C8-ketone, C9-ketone), two terpenes (monoterpene, monoterpene related), four sulphur or nitrogen compounds (sulfoxide-compound, S-compound, NS-compound, N-compound) and two alcohols (heptadienol, methanol). Seven VOCs (2-butanone, C8-ketone, a monoterpene, 2,4-heptadienol and three compounds containing N, S or NS) resulted significantly differently in compensate cirrhotic patients (Child-Pugh A; CP-A) and decompensated cirrhotic subjects (Child-Pugh B+C; CP-B+C). ROC (Receiver Operating Characteristic) analysis was performed considering three contrast groups: CP vs CTRL, CP-A vs CTRL and CP-A vs CP-B+C. In these comparisons monoterpene and N-compound showed the best diagnostic performance.Breath analysis by PTR-ToF-MS was able to distinguish cirrhotic patients from healthy subjects and to discriminate those with well compensated liver disease from those at more advanced severity stage. A breath-print of liver cirrhosis was assessed for the first time.
[Schuhfried2013] Schuhfried, E., M. Probst, J. Limtrakul, S. Wannakao, E. Aprea, L. Cappellin, T. D. Märk, F. Gasperi, and F. Biasioli, "Sulfides: chemical ionization induced fragmentation studied with proton transfer reaction-mass spectrometry and density functional calculations.", J Mass Spectrom, vol. 48, no. 3: Institut für Ionenphysik und Angewandte Physik, Leopold Franzens Universität Innsbruck, Technikerstr. 25, A-6020, Innsbruck, Austria., pp. 367–378, Mar, 2013.
Link: http://dx.doi.org/10.1002/jms.3153
Abstract
We report the energy-dependent fragmentation patterns upon protonation of eight sulfides (organosulfur compounds) in Proton Transfer Reaction-Mass Spectrometry (PTR-MS). Studies were carried out, both, experimentally with PTR-MS, and with theoretical quantum-chemical methods. Charge retention usually occurred at the sulfur-containing fragment for short chain sulfides. An exception to this is found in the unsaturated monosulfide allylmethyl sulfide (AMS), which preferentially fragmented to a carbo-cation at m/z 41, C3H5(+). Quantum chemical calculations (DFT with the M062X functional 6-31G(d,p) basis sets) for the fragmentation reaction pathways of AMS indicated that the most stable protonated AMS cation at m/z 89 is a protonated (cyclic) thiirane, and that the fragmentation reaction pathways of AMS in the drift tube are kinetically controlled. The protonated parent ion MH(+) is the predominant product in PTR-MS, except for diethyl disulfide at high collisional energies. The saturated monosulfides R-S-R' (with R<R') have little or no fragmentation, at the same time the most abundant fragment ion is the smaller R-S(+) fragment. The saturated disulfides R-S-S-R display more fragmentation than the saturated monosulfides, the most common fragments are disulfide containing fragments or long-chain carbo-cations. The results rationalize fragmentation data for saturated monosulfides and disulfides and represent a detailed analysis of the fragmentation of an unsaturated sulfide. Apart from the theoretical interest, the results are in support of the quantitative analysis of sulfides with PTR-MS, all the more so as PTR-MS is one of a few techniques that allow for ultra-low quantitative analysis of sulfides.
2014
[1548] Aprea, E., L. Cappellin, F. Gasperi, F. Morisco, V. Lembo, A. Rispo, R. Tortora, P. Vitaglione, N. Caporaso, and F. Biasioli, "Application of PTR-TOF-{MS} to investigate metabolites in exhaled breath of patients affected by coeliac disease under gluten free diet", Journal of Chromatography B, vol. 966, pp. 208–213, Sep, 2014.
Link: http://dx.doi.org/10.1016/j.jchromb.2014.02.015
Abstract
<p>Coeliac disease (CD) is a common chronic inflammatory disorder of the small bowel induced in genetically susceptible people by the exposure to gliadin gluten. Even though several tests are available to assist the diagnosis, CD remains a biopsy-defined disorder, thus any non-invasive or less invasive diagnostic tool may be beneficial. The analysis of volatile metabolites in exhaled breath, given its non-invasive nature, is particularly promising as a screening tool of disease in symptomatic or non-symptomatic patients. In this preliminary study the proton transfer reaction time of flight mass spectrometry coupled to a buffered end-tidal on-line sampler to investigate metabolites in the exhaled breath of patients affected by coeliac disease under a gluten free diet was applied. Both H3O+ or NO+ were used as precursor ions. In our investigation no differences were found in the exhaled breath of CD patients compared to healthy controls. In this study, 33 subjects were enrolled: 16 patients with CD, all adhering a gluten free diet, and 17 healthy controls. CD patients did not show any symptom of the disease at the time of breath analysis; thus the absence of discrimination from healthy controls was not surprising.</p>
[1565] Makhoul, S., A. Romano, L. Cappellin, G. Spano, V. Capozzi, E. Benozzi, T. D. Märk, E. Aprea, F. Gasperi, H. El-Nakat, et al., "Proton-transfer-reaction mass spectrometry for the study of the production of volatile compounds by bakery yeast starters", Journal of Mass Spectrometry, vol. 49, pp. 850--859, Sep, 2014.
Link: http://dx.doi.org/10.1002/jms.3421
Abstract
<p>The aromatic impact of bakery yeast starters is currently receiving considerable attention. The flavor characteristics of the dough and the finished products are usually evaluated by gas chromatography and sensory analysis. The limit of both techniques resides in their low-throughput character. In the present work, proton-transfer-reaction mass spectrometry (PTR-MS), coupled to a time-of-flight mass analyzer, was employed, for the first time, to measure the volatile fractions of dough and bread, and to monitor Saccharomyces cerevisiae volatile production in a fermented food matrix. Leavening was performed on small-scale (1 g) dough samples inoculated with different commercial yeast strains. The leavened doughs were then baked, and volatile profiles were determined during leavening and after baking. The experimental setup included a multifunctional autosampler, which permitted the follow-up of the leavening process on a small scale with a typical throughput of 500 distinct data points in 16 h. The system allowed to pinpoint differences between starter yeast strains in terms of volatile emission kinetics, with repercussions on the final product (i.e. the corresponding micro-loaves). This work demonstrates the applicability of PTR-MS for the study of volatile organic compound production during bread-making, for the automated and online real-time monitoring of the leavening process, and for the characterization and selection of bakery yeast starters in view of their production of volatile compounds. Copyright &copy; 2014 John Wiley &amp; Sons, Ltd.</p>
[1609] Makhoul, S., A. Romano, L. Cappellin, G. Spano, V. Capozzi, E. Benozzi, T. D. Märk, E. Aprea, F. Gasperi, H. El-Nakat, et al., "Proton-transfer-reaction mass spectrometry for the study of the production of volatile compounds by bakery yeast starters.", J Mass Spectrom, vol. 49, pp. 850–859, Sep, 2014.
Link: http://dx.doi.org/10.1002/jms.3421
Abstract
<p>The aromatic impact of bakery yeast starters is currently receiving considerable attention. The flavor characteristics of the dough and the finished products are usually evaluated by gas chromatography and sensory analysis. The limit of both techniques resides in their low-throughput character. In the present work, proton-transfer-reaction mass spectrometry (PTR-MS), coupled to a time-of-flight mass analyzer, was employed, for the first time, to measure the volatile fractions of dough and bread, and to monitor Saccharomyces cerevisiae volatile production in a fermented food matrix. Leavening was performed on small-scale (1&thinsp;g) dough samples inoculated with different commercial yeast strains. The leavened doughs were then baked, and volatile profiles were determined during leavening and after baking. The experimental setup included a multifunctional autosampler, which permitted the follow-up of the leavening process on a small scale with a typical throughput of 500 distinct data points in 16&thinsp;h. The system allowed to pinpoint differences between starter yeast strains in terms of volatile emission kinetics, with repercussions on the final product (i.e. the corresponding micro-loaves). This work demonstrates the applicability of PTR-MS for the study of volatile organic compound production during bread-making, for the automated and online real-time monitoring of the leavening process, and for the characterization and selection of bakery yeast starters in view of their production of volatile compounds.</p>
[1704] Yener, S., A. Romano, L. Cappellin, T. D. Märk, J. {Sánchez Del Pulgar}, F. Gasperi, L. Navarini, and F. Biasioli, "PTR-ToF-MS characterisation of roasted coffees (C. arabica) from different geographic origins.", J Mass Spectrom, vol. 49, pp. 929–935, Sep, 2014.
Link: http://dx.doi.org/10.1002/jms.3455
Abstract
<p>Characterisation of coffees according to their origins is of utmost importance for commercial qualification. In this study, the aroma profiles of different batches of three monoorigin roasted Coffea arabica coffees (Brazil, Ethiopia and Guatemala) were analysed by Proton-Transfer-Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS). The measurements were performed with the aid of a multipurpose autosampler. Unsupervised and supervised multivariate data analysis techniques were applied in order to visualise data and classify the coffees according to origin. Significant differences were found in volatile profiles of coffees. Principal component analysis allowed visualising a separation of the three coffees according to geographic origin and further partial least square regression-discriminant analysis classification showed completely correct predictions. Remarkably, the samples of one batch could be used as training set to predict geographic origin of the samples of the other batch, suggesting the possibility to predict further batches in coffee production by means of the same approach. Tentative identification of mass peaks aided characterisation of aroma fractions. Classification pinpointed some volatile compounds important for discrimination of coffees.</p>
2015
[1710] Gamero-Negrón, R., J. {Sánchez Del Pulgar}, L. Cappellin, C. García, F. Gasperi, and F. Biasioli, "Immune-spaying as an alternative to surgical spaying in Iberian × Duroc females: Effect on the VOC profile of dry-cured shoulders and dry-cured loins as detected by PTR-ToF-MS.", Meat Sci, vol. 110, pp. 169–173, Dec, 2015.
Link: http://dx.doi.org/10.1016/j.meatsci.2015.07.018
Abstract
<p>Immunocastration in pigs has been proposed as a cruelty-free alternative to surgical castration. In this work the effect of immune-spaying of female pigs on the volatile compound profile of Iberian dry-cured products was evaluated. The head-space volatile compound of dry-cured shoulders and loins from surgically spayed, immune-spayed and entire Iberian &times; Duroc females was characterized by proton transfer reaction-time of flight-mass spectrometry. It was not possible to identify a significant effect of the castration modality on dry-cured shoulders, probably because of the heterogeneity of samples. Contrarily, Principal Component Analysis of dry-cured loins indicates a better homogeneity of samples and the separation of loins from surgically spayed and immune-spayed females. Some mass peaks tentatively identified as important flavor compounds in dry-cured products, 3-methylbutanal, 2,3-butanedione and 3-methylbutanoic acid, were significantly higher in the immune-spayed females. Therefore, immune-spaying seems to have a negligible effect on the volatile compound profile of dry-cured shoulders, whereas it could affect the VOC profile in the case of dry-cured loins.</p>
[1706] Aprea, E., A. Romano, E. Betta, F. Biasioli, L. Cappellin, M. Fanti, and F. Gasperi, "Volatile compound changes during shelf life of dried Boletus edulis: comparison between SPME-GC-MS and PTR-ToF-MS analysis.", J Mass Spectrom, vol. 50, pp. 56–64, Jan, 2015.
Link: http://dx.doi.org/10.1002/jms.3469
Abstract
<p>Drying process is commonly used to allow long time storage of valuable porcini mushrooms (Boletus edulis). Although considered a stable product dried porcini flavour changes during storage. Monitoring of volatile compounds during shelf life may help to understand the nature of the observed changes. In the present work two mass spectrometric techniques were used to monitor the evolution of volatile compounds during commercial shelf life of dried porcini. Solid phase microextraction (SPME) coupled to gas chromatography - mass spectrometry (GC-MS) allowed the identification of 66 volatile compounds, 36 of which reported for the first time, monitored during the commercial shelf life of dried porcini. Proton transfer reaction - time of flight - mass spectrometry (PTR-ToF-MS) , a direct injection mass spectrometric technique, was shown to be a fast and sensitive instrument for the general monitoring of volatile compound evolution during storage of dried porcini. Furthermore, PTR-ToF-MS grants access to compounds whose determination would otherwise require lengthy pre-concentration and/or derivatization steps such as ammonia and small volatile amines. The two techniques, both used for the first time to study dried porcini, provided detailed description of time evolution of volatile compounds during shelf life. Alcohols, aldehydes, ketones and monoterpenes diminish during the storage while carboxylic acids, pyrazines, lactones and amines increase. The storage temperature modifies the rate of the observed changes influencing the final quality of the dried porcini. We showed the advantages of both techniques, suggesting a strategy to be adopted to follow time evolution of volatile compounds in food products during shelf life, based on the identification of compounds by GC-MS and the rapid time monitoring by PTR-ToF-MS measurements in order to maximize the advantages of both techniques.</p>
2016
[1724] Capozzi, V., S. Makhoul, E. Aprea, A. Romano, L. Cappellin, A. Sanchez Jimena, G. Spano, F. Gasperi, M. Scampicchio, and F. Biasioli, "PTR-{MS} Characterization of VOCs Associated with Commercial Aromatic Bakery Yeasts of Wine and Beer Origin", Molecules, vol. 21, pp. 483, Apr, 2016.
Link: http://dx.doi.org/10.3390/molecules21040483
Abstract
<p>In light of the increasing attention towards &ldquo;green&rdquo; solutions to improve food quality, the use of aromatic-enhancing microorganisms offers the advantage to be a natural and sustainable solution that did not negatively influence the list of ingredients. In this study, we characterize, for the first time, volatile organic compounds (VOCs) associated with aromatic bakery yeasts. Three commercial bakery starter cultures, respectively formulated with three Saccharomyces cerevisiae strains, isolated from white wine, red wine, and beer, were monitored by a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS), a direct injection analytical technique for detecting volatile organic compounds with high sensitivity (VOCs). Two ethanol-related peaks (m/z 65.059 and 75.080) described qualitative differences in fermentative performances. The release of compounds associated to the peaks at m/z 89.059, m/z 103.075, and m/z 117.093, tentatively identified as acetoin and esters, are coherent with claimed flavor properties of the investigated strains. We propose these mass peaks and their related fragments as biomarkers to optimize the aromatic performances of commercial preparations and for the rapid massive screening of yeast collections.</p>

Pages

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.