The world's leading PTR-MS company

Ultra-Sensitive Real-Time Trace Gas Analyzers  •  Modular TOF-MS for Research & OEM


You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!


Found 2 results
Title [ Year(Asc)]
Filters: Author is Sukul, Pritam  [Clear All Filters]
[1735] Sukul, P., J. K. Schubert, P. Oertel, S. Kamysek, K. Taunk, P. Trefz, and W. Miekisch, "FEV manoeuvre induced changes in breath VOC compositions: an unconventional view on lung function tests", Scientific Reports, vol. 6, pp. 28029, Jun, 2016.
Breath volatile organic compound (VOC) analysis can open a non-invasive window onto pathological and metabolic processes in the body. Decades of clinical breath-gas analysis have revealed that changes in exhaled VOC concentrations are important rather than disease specific biomarkers. As physiological parameters, such as respiratory rate or cardiac output, have profound effects on exhaled VOCs, here we investigated VOC exhalation under respiratory manoeuvres. Breath VOCs were monitored by means of real-time mass-spectrometry during conventional FEV manoeuvres in 50 healthy humans. Simultaneously, we measured respiratory and hemodynamic parameters noninvasively. Tidal volume and minute ventilation increased by 292 and 171% during the manoeuvre. FEV manoeuvre induced substance specific changes in VOC concentrations. pET-CO2 and alveolar isoprene increased by 6 and 21% during maximum exhalation. Then they decreased by 18 and 37% at forced expiration mirroring cardiac output. Acetone concentrations rose by 4.5% despite increasing minute ventilation. Blood-borne furan and dimethyl-sulphide mimicked isoprene profile. Exogenous acetonitrile, sulphides, and most aliphatic and aromatic VOCs changed minimally. Reliable breath tests must avoid forced breathing. As isoprene exhalations mirrored FEV performances, endogenous VOCs might assure quality of lung function tests. Analysis of exhaled VOC concentrations can provide additional information on physiology of respiration and gas exchange.
[1715] Sukul, P., P. Trefz, S. Kamysek, J. K. Schubert, and W. Miekisch, "Instant effects of changing body positions on compositions of exhaled breath.", J Breath Res, vol. 9, pp. 047105, Dec, 2015.
<p>Concentrations of exhaled volatile organic compounds (VOCs) may depend not only on biochemical or pathologic processes but also on physiological parameters. As breath sampling may be done in different body positions, effects of the sampling position on exhaled VOC concentrations were investigated by means of real-time mass spectrometry. Breaths from 15 healthy volunteers were analyzed in real-time by PTR-ToF-MS-8000 during paced breathing (12/min) in a continuous side-stream mode. We applied two series of body positions (setup 1: sitting, standing, supine, and sitting; setup 2: supine, left lateral, right lateral, prone, and supine). Each position was held for 2&thinsp;min. Breath VOCs were quantified in inspired and alveolar air by means of a custom-made algorithm. Parallel monitoring of hemodynamics and capnometry was performed noninvasively. In setup 1, when compared to the initial sitting position, normalized mean concentrations of isoprene, furan, and acetonitrile decreased by 24%, 26%, and 9%, respectively, during standing and increased by 63%, 36%, and 10% during lying mirroring time profiles of stroke volume and pET-CO2. In contrast, acetone and H2S concentrations remained almost constant. In setup 2, when compared to the initial supine position, mean alveolar concentrations of isoprene and furan increased significantly up to 29% and 16%, respectively, when position was changed from lying on the right side to the prone position. As cardiac output and stroke volume decreased at that time, the reasons for the observed concentrations changes have to be linked to the ventilation/perfusion ratio or compartmental distribution rather than to perfusion alone. During final postures, all VOC concentrations, hemodynamics, and pET-CO2 returned to baseline. Exhaled blood-borne VOC profiles changed due to body postures. Changes depended on cardiac stroke volume, origin, compartmental distribution and physico-chemical properties of the substances. Patients&#39; positions and cardiac output have to be controlled when concentrations of breath VOCs are to be interpreted in terms of biomarkers.</p>

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:


Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.


Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics


Download the latest version of the IONICON publication database as BibTeX.