[Lanza2013]
Lanza, M., J. W. Acton, S. Jürschik, P. Sulzer, K. Breiev, A. Jordan, E. Hartungen, G. Hanel, L. Märk, C. A. Mayhew, et al.,
"Distinguishing two isomeric mephedrone substitutes with selective reagent ionisation mass spectrometry (SRI-MS)",
Journal of Mass Spectrometry, vol. 48, no. 9, pp. 1015–1018, 2013.
Link:
http://dx.doi.org/10.1002/jms.3253
The isomers 4-methylethcathinone and N-ethylbuphedrone are substitutes for the recently banned drug mephedrone. We find that with conventional proton transfer reaction mass spectrometry (PTR-MS), it is not possible to distinguish between these two isomers, because essentially for both substances, only the protonated molecules are observed at a mass-to-charge ratio of 192 (C12H18NO+). However, when utilising an advanced PTR-MS instrument that allows us to switch the reagent ions (selective reagent ionisation) from H3O+ (which is commonly used in PTR-MS) to NO+, O2+ and Kr+, characteristic product (fragment) ions are detected: C4H10N+ (72 Da) for 4-methylethcathinone and C5H12N+ (86 Da) for N-ethylbuphedrone; thus, selective reagent ionisation MS proves to be a powerful tool for fast detection and identification of these compounds. Copyright © 2013 John Wiley & Sons, Ltd.
[1591]
Maihom, T., E. Schuhfried, M. Probst, J. Limtrakul, T. D. Märk, and F. Biasioli,
"Fragmentation of allylmethylsulfide by chemical ionization: dependence on humidity and inhibiting role of water.",
J Phys Chem A, vol. 117, pp. 5149–5160, Jun, 2013.
Link:
http://dx.doi.org/10.1021/jp4015806
<p>We report on a previously unknown reaction mechanism involving water in the fragmentation reaction following chemical ionization. This result stems from a study presented here on the humidity-dependent and energy-dependent endoergic fragmentation of allyl methyl sulfide (AMS) upon protonation in a proton transfer reaction-mass spectrometer (PTR-MS). The fragmentation pathways were studied with experimental (PTR-MS) and quantum chemical methods (polarizable continuum model (PCM), microhydration, studied at the MP2/6-311+G(3df,2p)//MP2/6-31G(d,p) level of theory). We report in detail on the energy profiles, reaction mechanisms, and proton affinities (G4MP2 calculations). In the discovered reaction mechanism, water reduces the fragmentation of protonated species in chemical ionization. It does so by direct interaction with the protonated species via covalent binding (C3H5(+)) or via association (AMS·H(+)). This stabilizes intermediate complexes and thus overall increases the activation energy for fragmentation. Water thereby acts as a reusable inhibitor (anticatalyst) in chemical ionization. Moreover, according to the quantum chemical (QC) results, when water is present in abundance it has the opposite effect and enhances fragmentation. The underlying reason is a concentration-dependent change in the reaction principle from active inhibition of fragmentation to solvation, which then enhances fragmentation. This amphoteric behavior of water is found for the fragmentation of C3H5(+) to C3H3(+), and similarly for the fragmentation of AMS·H(+) to C3H5(+). The results support humidity-dependent quantification efforts for PTR-MS and chemical ionization mass spectrometry (CIMS). Moreover, the results should allow for a better understanding of ion-chemistry in the presence of water.</p>
[1594]
Schuhfried, E., T. D. Märk, and F. Biasioli,
"Primary Ion Depletion Kinetics (PIDK) Studies as a New Tool for Investigating Chemical Ionization Fragmentation Reactions with PTR-MS.",
PLoS One, vol. 8, pp. e66925, 2013.
Link:
http://dx.doi.org/10.1371/journal.pone.0066925
<p>We report on a new approach for studying fragmentation channels in Proton Transfer Reaction-Mass Spectrometry (PTR-MS), which we name primary ion depletion kinetics (PIDK). PTR-MS is a chemical ionization mass spectrometric (CIMS) technique deploying hydronium ions for the chemical ionization. Induced by extremely high concentrations of analyte M, depletion of the primary ions in the drift tube occurs. This is observed as quasi zero concentration of the primary ion H3O(+), and constant MH(+). Under these non-standard conditions, we find an overall changed fragmentation. We offer two explanations. Either the changed fragmentation pattern is the result of secondary proton transfer reactions. Or, alternatively, the fast depletion of H3O(+) leads to reduced heating of H3O(+) in the drift field, and consequently changed fragmentation following protonation of the analyte M. In any case, we use the observed changes in fragmentation as a successful new approach to fragmentation studies, and term it primary ion depletion kinetics, PIDK. PIDK easily yields an abundance of continuous data points with little deviation, because they are obtained in one experimental run, even for low abundant fragments. This is an advantage over traditional internal kinetic energy variation studies (electric field per number density (E/N) variation studies). Also, some interpretation on the underlying fragmentation reaction mechanisms can be gleamed. We measure low occurring fragmentation (<2% of MH(+)) of the compounds dimethyl sulfide, DMS, a compound that reportedly does not fragment, diethyl sulfide DES, and dipropyl sulfide DPS. And we confirm and complement the results with traditional E/N studies. Summing up, the new approach of primary ion depletion kinetics allows for the identification of dehydrogenation [MH(+) -H2] and adduct formation (RMH(+)) as low abundant fragmentation channels in monosulfides.</p>
[Schuhfried2013]
Schuhfried, E., M. Probst, J. Limtrakul, S. Wannakao, E. Aprea, L. Cappellin, T. D. Märk, F. Gasperi, and F. Biasioli,
"Sulfides: chemical ionization induced fragmentation studied with proton transfer reaction-mass spectrometry and density functional calculations.",
J Mass Spectrom, vol. 48, no. 3: Institut für Ionenphysik und Angewandte Physik, Leopold Franzens Universität Innsbruck, Technikerstr. 25, A-6020, Innsbruck, Austria., pp. 367–378, Mar, 2013.
Link:
http://dx.doi.org/10.1002/jms.3153
We report the energy-dependent fragmentation patterns upon protonation of eight sulfides (organosulfur compounds) in Proton Transfer Reaction-Mass Spectrometry (PTR-MS). Studies were carried out, both, experimentally with PTR-MS, and with theoretical quantum-chemical methods. Charge retention usually occurred at the sulfur-containing fragment for short chain sulfides. An exception to this is found in the unsaturated monosulfide allylmethyl sulfide (AMS), which preferentially fragmented to a carbo-cation at m/z 41, C3H5(+). Quantum chemical calculations (DFT with the M062X functional 6-31G(d,p) basis sets) for the fragmentation reaction pathways of AMS indicated that the most stable protonated AMS cation at m/z 89 is a protonated (cyclic) thiirane, and that the fragmentation reaction pathways of AMS in the drift tube are kinetically controlled. The protonated parent ion MH(+) is the predominant product in PTR-MS, except for diethyl disulfide at high collisional energies. The saturated monosulfides R-S-R' (with R<R') have little or no fragmentation, at the same time the most abundant fragment ion is the smaller R-S(+) fragment. The saturated disulfides R-S-S-R display more fragmentation than the saturated monosulfides, the most common fragments are disulfide containing fragments or long-chain carbo-cations. The results rationalize fragmentation data for saturated monosulfides and disulfides and represent a detailed analysis of the fragmentation of an unsaturated sulfide. Apart from the theoretical interest, the results are in support of the quantitative analysis of sulfides with PTR-MS, all the more so as PTR-MS is one of a few techniques that allow for ultra-low quantitative analysis of sulfides.