The world's leading PTR-MS company

Ultra-Sensitive Real-Time Trace Gas Analyzers  •  Modular TOF-MS for Research & OEM

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 777 results
Title [ Year(Desc)]
2005
[1498] Holzinger, R.., A.. Lee, K.. T. Paw, and U.. A. H. Goldstein, "Observations of oxidation products above a forest imply biogenic emissions of very reactive compounds", Atmospheric Chemistry and Physics, vol. 5, pp. 67–75, Jan, 2005.
Link: http://dx.doi.org/10.5194/acp-5-67-2005
Abstract
<p>Vertical gradients of mixing ratios of volatile organic compounds have been measured in a Ponderosa pine forest in Central California (38.90&deg; N, 120.63&deg; W, 1315m). These measurements reveal large quantities of previously unreported oxidation products of short lived biogenic precursors. The emission of biogenic precursors must be in the range of 13-66&micro;mol m-2h-1 to produce the observed oxidation products. That is 6-30 times the emissions of total monoterpenes observed above the forest canopy on a molar basis. These reactive precursors constitute a large fraction of biogenic emissions at this site, and are not included in current emission inventories. When oxidized by ozone they should efficiently produce secondary aerosol and hydroxyl radicals.</p>
[1647] Jobson, B.T.., M.L.. Alexander, G.D.. Maupin, and G.G.. Muntean, "On-line analysis of organic compounds in diesel exhaust using a proton transfer reaction mass spectrometer (PTR-{MS})", International Journal of Mass Spectrometry, vol. 245, pp. 78–89, Aug, 2005.
Link: http://dx.doi.org/10.1016/j.ijms.2005.05.009
Abstract
Chemical ionization mass spectrometry using H3O+ proton transfer in an ion drift tube (PTR-MS) was used to measure volatile organic compound (VOC) concentrations on-line in diesel engine exhaust as a function of engine load. The purpose of the study was to evaluate the PTR-MS instrument as an analytical tool for diesel engine emissions abatement research. Measured sensitivities determined from gas standards were found to agree well with calculated sensitivities for non-polar species. A slight humidity dependent sensitivity was observed for non-polar species, implying that reactions with H+(H2O)2 were important for some organics. The diesel exhaust mass spectra were complex but displayed a pattern of strong ion signals at 14n + 1 (n = 3.8) masses, with a relative ion abundance similar to that obtained from electron impact ionization of alkanes. Laboratory experiments verified that C8–C16n-alkanes and C8–C13 1-alkenes react with H3O+ in dissociative proton transfer reaction resulting in alkyl cation ion products, primarily m/z 41, 43, 57, 71 and 85. Monitoring the sum of these ion signals may be useful for estimating alkane emissions from unburnt diesel fuel. Alkane fragmentation likely simplified the diesel exhaust mass spectrum and reduced potential mass interferences with isobaric aromatic compounds. Concentrations of aldehydes and ketones dominated those of aromatic species with formaldehyde and acetaldehyde estimated to be the most abundant VOCs in the PTR-MS mass spectrum at all engine loads. The relative abundances of benzene and toluene increased with engine load indicating their pyrogenic origin. The relative abundance of alkanes, aromatics, aldehydes and alcohols was broadly consistent with literature publications of diesel exhaust analysis by gas chromatography. About 75% of the organic ion signal could be assigned. On-line analysis of diesel exhaust using this technology may be valuable tool for diesel engine emission research.
[Ruuskanen2005] Ruuskanen, T. M., P. Kolari, J. Bäck, M. Kulmala, J. Rinne, H. Hakola, R. Taipale, M. Raivonen, N. Altimir, and P. Hari, "On-line field measurements of monoterpene emissions from Scots pine by proton-transfer-reaction mass spectrometry", Boreal environment research, vol. 10, no. 6, pp. 553–567, 2005.
Link: http://www.helsinki.fi/herc/research/URPOpublications/URPO_Ruuskanen%20et%20al%2005%5B1%5D.pdf
[Rinne2005] Rinne, J., T. M. Ruuskanen, A. Reissell, R. Taipale, H. Hakola, and M. Kulmala, "On-line PTR-MS measurements of atmospheric concentrations of volatile organic compounds in a European boreal forest ecosystem", Boreal environment research, vol. 10, no. 5, pp. 425–436, 2005.
Link: http://www.borenv.net/BER/pdfs/ber10/ber10-425.pdf
[Warneke2005] Warneke, C., S. Kato, J. A. { De Gouw}, P. D. Goldan, W. C. Kuster, M. Shao, E. R. Lovejoy, R. Fall, and F. C. Fehsenfeld, "Online volatile organic compound measurements using a newly developed proton-transfer ion-trap mass spectrometry instrument during New England Air Quality Study–Intercontinental Transport and Chemical Transformation 2004: performance, intercomparison, a", Environ Sci Technol, vol. 39, no. 14: National Oceanic and Atmospheric Administration, Aeronomy Laboratory, 325 Broadway, Boulder, Colorado 80305, USA. Carsten.Warneke@noaa.gov, pp. 5390–5397, Jul, 2005.
Link: http://pubs.acs.org/doi/abs/10.1021/es050602o
Abstract
We have used a newly developed proton-transfer ion-trap mass spectrometry (PIT-MS) instrument for online trace gas analysis of volatile organic compounds (VOCs) during the 2004 New England Air Quality Study-Intercontinental Transport and Chemical Transformation study. The PIT-MS instrument uses proton-transfer reactions with H3O+ ions to ionize VOCs, similarto a PTR-MS (proton-transfer reaction mass spectrometry) instrument but uses an ion trap mass spectrometer to analyze the product ions. The advantages of an ion trap are the improved identification of VOCs and a near 100% duty cycle. During the experiment, the PIT-MS instrument had a detection limit between 0.05 and 0.3 pbbv (S/N = 3 (signal-to-noise ratio)) for 2-min integration time for most tested VOCs. PIT-MS was used for ambient air measurements onboard a research ship and agreed well with a gas chromatography mass spectrometer). The comparison included oxygenated VOCs, aromatic compounds, and others such as isoprene, monoterpenes, acetonitrile, and dimethyl sulfide. Automated collision-induced dissociation measurements were used to determine the contributions of acetone and propanal to the measured signal at 59 amu; both species are detected at this mass and are thus indistinguishable in conventional PTR-MS.
[Beauchamp2005] Beauchamp, J., A. Wisthaler, A. Hansel, E. Kleist, M. Miebach, ÜLO. NIINEMETS, U. Schurr, and JÜRGEN. WILDT, "Ozone induced emissions of biogenic VOC from tobacco: relationships between ozone uptake and emission of LOX products", Plant, Cell & Environment, vol. 28, no. 10: Wiley Online Library, pp. 1334–1343, 2005.
Link: http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2005.01383.x/full
Abstract
Volatile organic compound (VOC) emissions from tobacco (Nicotiana tabacum L. var. Bel W3) plants exposed to ozone (O3) were investigated using proton-transfer-reaction mass-spectrometry (PTR-MS) and gas chromatography mass-spectrometry (GC-MS) to find a quantitative reference for plants’ responses to O3 stress. O3 exposures to illuminated plants induced post-exposure VOC emission bursts. The lag time for the onset of volatile C6 emissions produced within the octadecanoid pathway was found to be inversely proportional to O3 uptake, or more precisely, to the O3 flux density into the plants. In cases of short O3 pulses of identical duration the total amount of these emitted C6 VOC was related to the O3 flux density into the plants, and not to ozone concentrations or dose–response relationships such as AOT 40 values. Approximately one C6 product was emitted per five O3 molecules taken up by the plant. A threshold flux density of O3 inducing emissions of C6 products was found to be (1.6 ± 0.7) × 10−8 mol m−2 s−1.
[Wisthaler2005] Wisthaler, A., G. Tamás, D. P. Wyon, P. Strøm-Tejsen, D. Space, J. Beauchamp, A. Hansel, T. D. Maerk, and C. J. Weschler, "Products of ozone-initiated chemistry in a simulated aircraft environment.", Environ Sci Technol, vol. 39, no. 13: International Centre for Indoor Environment and Energy, Technical University of Denmark (DTU), DK-2800 Kgs. Lyngby, Denmark., pp. 4823–4832, Jul, 2005.
Link: http://pubs.acs.org/doi/abs/10.1021/es047992j
Abstract
We used proton-transfer-reaction mass spectrometry (PTR-MS) to examine the products formed when ozone reacted with the materials in a simulated aircraft cabin, including a loaded high-efficiency particulate air (HEPA) filter in the return air system. Four conditions were examined: cabin (baseline), cabin plus ozone, cabin plus soiled T-shirts (surrogates for human occupants), and cabin plus soiled T-shirts plus ozone. The addition of ozone to the cabin without T-shirts, at concentrations typically encountered during commercial air travel, increased the mixing ratio (v:v concentration) of detected pollutants from 35 ppb to 80 ppb. Most of this increase was due to the production of saturated and unsaturated aldehydes and tentatively identified low-molecular-weight carboxylic acids. The addition of soiled T-shirts, with no ozone present, increased the mixing ratio of pollutants in the cabin air only slightly, whereas the combination of soiled T-shirts and ozone increased the mixing ratio of detected pollutants to 110 ppb, with more than 20 ppb originating from squalene oxidation products (acetone, 4-oxopentanal, and 6-methyl-5-hepten-2-one). For the two conditions with ozone present, the more-abundant oxidation products included acetone/propanal (8-20 ppb), formaldehyde (8-10 ppb), nonanal (approximately 6 ppb), 4-oxopentanal (3-7 ppb), acetic acid (approximately 7 ppb), formic acid (approximately 3 ppb), and 6-methyl-5-hepten-2-one (0.5-2.5 ppb), as well as compounds tentatively identified as acrolein (0.6-1 ppb) and crotonaldehyde (0.6-0.8 ppb). The odor thresholds of certain products were exceeded. With an outdoor air exchange of 3 h(-1) and a recirculation rate of 20 h(-1), the measured ozone surface removal rate constant was 6.3 h(-1) when T-shirts were not present, compared to 11.4 h(-1) when T-shirts were present.
[Biasioli2005] Biasioli, F., F. Gasperi, E. Aprea, D. Mott, I. Endrizzi, V. Framondino, and T. D. Märk, "PTR-MS in agroindustrial applications: a methodological perspective", Mass Spectrometry and Its Applications, pp. 77, 2005.
Link: http://www.uibk.ac.at/iup/infofolder/contributions_ptrms.pdf#page=88
[Zini2005] Zini, E., F. Biasioli, F. Gasperi, D. Mott, E. Aprea, T. D. Maerk, A. Patocchi, C. Gessler, and M. Komjanc, "QTL mapping of volatile compounds in ripe apples detected by proton transfer reaction-mass spectrometry", Euphytica, vol. 145, no. 3: Springer, pp. 269–279, 2005.
Link: http://www.springerlink.com/index/7353036TQ1852282.pdf
Abstract
The availability of genetic linkage maps enables the detection and analysis of QTLs contributing to quality traits of the genotype. Proton Transfer Reaction Mass Spectrometry (PTR-MS), a relatively novel spectrometric technique, has been applied to measure the headspace composition of the Volatile Organic Compounds (VOCs) emitted by apple fruit genotypes of the progeny ‘Fiesta’ × ‘Discovery’. Fruit samples were characterised by their PTR-MS spectra normalised to total area. QTL analysis for all PTR-MS peaks was carried out and 10 genomic regions associated with the peaks at m/z = 28, 43, 57, 61, 103, 115 and 145 were identified (LOD > 2.5). We show that it is possible to find quantitative trait loci (QTLs) related to PTR-MS characterisation of the headspace composition of single whole apple fruits indicating the presence of a link between molecular characterisation and PTR-MS data. We provide tentative information on the metabolites related to the detected QTLs based on available chemical information. A relation between apple skin colour and peaks related to carbonyl compounds was established.
[Karl2005] Karl, T., F. Harren, C. Warneke, J. De Gouw, C. Grayless, and R. Fall, "Senescing grass crops as regional sources of reactive volatile organic compounds", Journal of geophysical research, vol. 110, no. D15: American Geophysical Union, pp. D15302, 2005.
Link: http://www.agu.org/pubs/crossref/2005/2005JD005777.shtml
Abstract
Grass crop species, rice and sorghum, that are widely grown in the southeastern Texas region were analyzed for release of biogenic volatile organic compounds (VOCs) in simulated leaf-drying/senescence experiments. VOC release was measured by both online proton transfer reaction mass spectrometry (PTR-MS) and proton transfer ion trap mass spectrometry (PIT-MS) methods, and it was demonstrated that these two grass crops release a large variety of oxygenated VOCs upon drying under laboratory conditions primarily from leaves and not from stems. VOC release from paddy rice varieties was much greater than from sorghum, and major VOCs identified by gas chromatography PTR-MS included methanol, acetaldehyde, acetone, n-pentanal, methyl propanal, hexenol, hexanal, cis-3-hexenal, and trans-2-hexenal. The latter four VOCs, all C6 compounds known to be formed in wounded leaves, were the major volatiles released from drying rice leaves; smaller but substantial amounts of acetaldehyde were observed in all drying experiments. Online detection of VOCs using PIT-MS gave results comparable to those obtained with PTR-MS, and use of PIT-MS with collision-induced dissociation of trapped ions allowed unambiguous determination of the ratios of cis- and trans-hexenals during different phases of drying. As rice is one of the largest harvested crops on a global scale, it is conceivable that during rice senescence releases of biogenic VOCs, especially the reactive C6 wound VOCs, may contribute to an imbalance in regional atmospheric oxidant formation during peak summer/fall ozone formation periods. A county-by-county estimate of the integrated emissions of reactive biogenic VOCs from sorghum and rice production in Texas suggests that these releases are orders of magnitude lower than anthropogenic VOCs in urban areas but also that VOC emissions from rice in southeastern coastal Texas may need to be included in regional air quality assessments during periods of extensive harvesting.
[Gallardo-Escamilla2005] Gallardo-Escamilla, F.. J., A.. L. Kelly, and C.. M. Delahunty, "Sensory characteristics and related volatile flavor compound profiles of different types of whey.", J Dairy Sci, vol. 88, no. 8: Department of Food and Nutritional Sciences, University College Cork, Cork, Ireland., pp. 2689–2699, Aug, 2005.
Link: http://dx.doi.org/10.3168/jds.S0022-0302(05)72947-7
Abstract
To characterize the flavor of liquid whey, 11 samples of whey representing a wide range of types were sourced from cheese and casein-making procedures, either industrial or from pilot-plant facilities. Whey samples were assessed for flavor by descriptive sensory evaluation and analyzed for headspace volatile composition by proton transfer reaction-mass spectrometry (PTR-MS). The sensory data clearly distinguished between the samples in relation to the processes of manufacture; that is, significant differences were apparent between cheese, rennet, and acid wheys. For Mozzarella and Quarg wheys, in which fermentation progressed to low pH values, the starter cultures used for cheese making had a significant influence on flavor. In comparison, Cheddar and Gouda wheys were described by milk-like flavors, and rennet casein wheys were described by "sweet" (oat-like and "sweet") and thermally induced flavors. The volatile compound data obtained by PTR-MS differentiated the samples as distinctive and reproducible "chemical fingerprints". On applying partial least squares regression to determine relationships between sensory and volatile composition data, sensory characteristics such as "rancid" and cheese-like odors and "caramelized milk," yogurt-like, "sweet," and oat-like flavors were found to be related to the presence and absence of specific volatile compounds.
[Lindinger2005] Lindinger, C., P. Pollien, S. Ali, C. Yeretzian, I. Blank, and T. Maerk, "Unambiguous identification of volatile organic compounds by proton-transfer reaction mass spectrometry coupled with GC/MS.", Anal Chem, vol. 77, no. 13: Nestlé Research Center, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland., pp. 4117–4124, Jul, 2005.
Link: http://pubs.acs.org/doi/abs/10.1021/ac0501240
Abstract
Interest in on-line measurements of volatile organic compounds (VOCs) is increasing, as sensitive, compact, and affordable direct inlet mass spectrometers are becoming available. Proton-transfer reaction mass spectrometry (PTR-MS) distinguishes itself by its high sensitivity (low ppt range), high time resolution (200 ms), little ionization-induced fragmentation, and ionization efficiency independent of the compound to be analyzed. Yet, PTR-MS has a shortcoming. It is a one-dimensional technique that characterizes compounds only via their mass, which is not sufficient for positive identification. Here, we introduce a technical and analytical extension of PTR-MS, which removes this shortcoming, while preserving its salient and unique features. Combining separation of VOCs by gas chromatography (GC) with simultaneous and parallel detection of the GC effluent by PTR-MS and electron impact MS, an unambiguous interpretation of complex PTR-MS spectra becomes feasible. This novel development is discussed on the basis of characteristic performance parameters, such as resolution, linear range, and detection limit. The recently developed drift tube with a reduced reaction volume is crucial to exploit the full potential of the setup. We illustrate the performance of the novel setup by analyzing a complex food system.
[Pinggera2005] Pinggera, G-M., P. Lirk, F. Bodogri, R. Herwig, G. Steckel-Berger, G. Bartsch, and J. Rieder, "Urinary acetonitrile concentrations correlate with recent smoking behaviour.", BJU Int, vol. 95, no. 3: Department of Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria. Germar-Michael.Pinggera@uibk.ac.at, pp. 306–309, Feb, 2005.
Link: http://dx.doi.org/10.1111/j.1464-410X.2005.05288.x
Abstract
To assess the concentration of acetonitrile (a saturated aliphatic nitrile) in the urine of habitual cigarette smokers and non-smokers, as exposure to smoke can be measured by monitoring ambient air or by in vivo tests, but acetonitrile measured in exhaled breath is reportedly a quantitative marker of recent smoking behaviour.The study included 101 volunteers (57 men and 44 women, mean age 49 years). An absence of urinary tract infection on urine analysis or clinical history was mandatory. The subjects were classified into five groups, i.e. a control group of non-smokers and four groups according to the number of cigarettes smoked daily. Urine samples were stored at 8 degrees C until acetonitrile was measured, within 24 h of collection, using proton-transfer reaction mass spectrometry (PTR-MS). Each measurement was repeated at least 10 times, and the mean used for statistical analysis.The mean (sd) acetonitrile level in the urine of 46 non-smokers was 3.74 (1.78) parts per billion volatile (ppbv). The concentration of acetonitrile increased with the number of cigarettes smoked daily, the highest concentration being in the subgroup of 13 very heavy smokers (>30 cigarettes/day) with means up to 28.04 (5.38) ppbv.PTR-MS is a quick, noninvasive online method for determining urinary acetonitrile levels, a marker for recent active and passive smoking behaviour, and thus for checking compliance. As smoking has been shown to affect the genesis of bladder cancer, further studies are required to determine the association of acetonitrile with bladder cancer.
2006
[Colomb2006] Colomb, A., J. Williams, J. Crowley, V. Gros, R. Hofmann, G. Salisbury, T. Klüpfel, R. Kormann, A. Stickler, C. Forster, et al., "Airborne measurements of trace organic species in the upper troposphere over Europe: the impact of deep convection", Environmental Chemistry, vol. 3, no. 4: CSIRO, pp. 244–259, 2006.
Link: http://www.publish.csiro.au/?paper=EN06020
Abstract
The volume mixing ratios of several organic trace gases and ozone (O3) were measured in the upper troposphere over Europe during the UTOPIHAN-ACT aircraft campaign in July 2003. The organic trace gases included alkanes, isoprene, aromatics, iodomethane, and trichloroethylene, oxygenates such as acetone, methanol, formaldehyde, carbon monoxide, and longer-lived tracer species such as chlorofluorocarbons and halochloroflurocarbons. The aim of the UTOPIHAN-ACT project was to study the chemical impact of deep convection on the continental upper troposphere. A Lear Jet aircraft, based in Germany, was flown at heights between 6 and 13 km in the region 59°N–42°N to 7°W–13°E during July 2003. Overall, the convectively influenced measurements presented here show a weaker variability lifetime dependence of trace gases than similar measurements collected over the Mediterranean region under more stable high-pressure conditions. Several cases of convective outflow are identified by the elevated mixing ratios of organic species relative to quiescent background conditions, with both biogenic and anthropogenic influences detectable in the upper troposphere. Enhancement at higher altitudes, notably of species with relatively short chemical lifetimes such as benzene, toluene, and even isoprene indicates deep convection over short timescales during summertime. The impact of deep convection on the local upper tropospheric formaldehyde and HOx budgets is assessed.
[Mueller2006] Müller, K., S. Haferkorn, W. Grabmer, A. Wisthaler, A. Hansel, J. Kreuzwieser, C. Cojocariu, H. Rennenberg, and H. Herrmann, "Biogenic carbonyl compounds within and above a coniferous forest in Germany", Atmospheric Environment, vol. 40: Elsevier, pp. 81–91, 2006.
Link: http://www.sciencedirect.com/science/article/pii/S1352231006003220
Abstract
Diurnal mixing ratios of aldehydes and ketones were investigated during two joint experiments in summer months to identify biogenic contributions from coniferous forests to tropospheric chemistry. In a Norway spruce forest, the diurnal variation of carbonyl compounds was measured at 12 m (in the treetop) and at 24 m (above the canopy). The main findings of the experiment are that acetone (up to 9.1 ppbv), formaldehyde (up to 6.5 ppbv), acetaldehyde (up to 5.5 ppbv) and methyl ethyl ketone (MEK, up to 1.8 ppbv) were found in highest concentrations. For all major compounds with the exception of MEK, primary emissions are supposed. From α-pinene oxidation, pinonaldehyde was found with its peak concentrations (up to 0.15 ppbv) during the early morning hours. The diurnal variation of concentrations for most other compounds shows maximum concentrations near midday in 2,4-dinitrophenylhydrazine (DNPH) measurements but not for proton-transfer reaction mass spectrometry (PTR-MS) measurements of acetaldehyde and acetone. A clear correlation of carbonyl compound concentration to the radiation intensity and the temperature (R2=0.66) was found. However, formaldehyde did not show distinct diurnal variations. A very high correlation was observed for both heights between mixing ratios of acetaldehyde and acetone (R2=0.84), acetone and MEK (R2=0.90) as well as acetaldehyde and MEK (R2=0.88) but not for formaldehyde and the others. For the most time, the observed carbonyl compound concentrations above the canopy are higher than within the forest stand. This indicates an additional secondary formation in the atmosphere above the forest. The differences of acetone and acetaldehyde mixing ratios detected by DNPH technique and the PTR-MS could not be fully clarified by a laboratory intercomparison.
[Warneke2006] Warneke, C., JA. De Gouw, A. Stohl, OR. Cooper, PD. Goldan, WC. Kuster, JS. Holloway, EJ. Williams, BM. Lerner, SA. McKeen, et al., "Biomass burning and anthropogenic sources of CO over New England in the summer 2004", Journal of geophysical research, vol. 111, no. D23: American Geophysical Union, pp. D23S15, 2006.
Link: http://www.agu.org/pubs/crossref/2006/2005JD006878.shtml
Abstract
During the summer of 2004 large wildfires were burning in Alaska and Canada, and part of the emissions were transported toward the northeast United States, where they were measured during the NEAQS-ITCT 2k4 (New England Air Quality Study–Intercontinental Transport and Chemical Transformation) study on board the NOAA WP-3 aircraft and the NOAA research vessel Ronald H. Brown. Using acetonitrile and chloroform as tracers the biomass burning and the anthropogenic fraction of the carbon monoxide (CO) enhancement are determined. As much as 30% of the measured enhancement is attributed to the forest fires in Alaska and Canada transported into the region, and 70% is attributed to the urban emissions of mainly New York and Boston. On some days the forest fire emissions were mixed down to the surface and dominated the CO enhancement. The results compare well with the FLEXPART transport model, indicating that the total emissions during the measurement campaign for biomass burning might be about 22 Tg. The total U.S. anthropogenic CO sources used in FLEXPART are 25 Tg. FLEXPART model, using the U.S. EPA NEI-99 data, overpredicts the CO mixing ratio around Boston and New York in 2004 by about 50%.
[vonDahl2006] von Dahl}, C. C. {, M. Haevecker, R. Schloegl, and I. T. Baldwin, "Caterpillar-elicited methanol emission: a new signal in plant-herbivore interactions?", Plant J, vol. 46, no. 6: Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knoell-Strasse 8, 07745 Jena, Germany., pp. 948–960, Jun, 2006.
Link: http://dx.doi.org/10.1111/j.1365-313X.2006.02760.x
Abstract
Plants release into the atmosphere large quantities of volatile organic compounds (VOCs), of which methanol (MeOH), a putative waste product, is the second most abundant. Using online proton-transfer-reaction mass spectrometry (PTR-MS), we demonstrate that when Manduca sexta larvae attack Nicotiana attenuata plants, the wound-induced release of MeOH dramatically increases. The sustained MeOH emission 24 h after herbivore feeding is already substantially greater than the release of the well-characterized green-leaf VOC E-2-hexenal. Herbivore attack and treatment of puncture wounds with larval oral secretions (OS) increased the transcript accumulation and activity of leaf pectin methylesterases (PMEs), and decreased the degree of pectin methylation, as determined by (1)H-NMR; therefore, we propose that the released MeOH originates from the activation of PMEs by herbivore attack. The herbivore- and OS-elicited MeOH results not from the activity of previously characterized elicitors in OS but from a pH shift at the wound site when larval OS (pH 8.5-9.5) are introduced into the wounds during feeding. Applying MeOH to plants in quantities that mimic the herbivory-elicited release decreases the activity of the potent plant defense proteins trypsin proteinase inhibitors (TPI), and increases the performance of the attacking larvae. The pH of lepidopteran larvae regurgitants is commonly very high, and the MeOH released during feeding that is elicited by the pH change at the wound site functions as a quantitative signal that influences the outcome of the plant-herbivore interaction.
[Zavala2006] Zavala, M., SC. Herndon, RS. Slott, EJ. Dunlea, LC. Marr, JH. Shorter, M. Zahniser, WB. Knighton, TM. Rogers, CE. Kolb, et al., "Characterization of on-road vehicle emissions in the Mexico City Metropolitan Area using a mobile laboratory in chase and fleet average measurement modes during the MCMA-2003 field campaign", Atmospheric Chemistry and Physics, vol. 6, no. 12: Copernicus GmbH, pp. 5129–5142, 2006.
Link: http://www.atmos-chem-phys.net/6/5129/2006/acp-6-5129-2006.html
Abstract
A mobile laboratory was used to measure on-road vehicle emission ratios during the MCMA-2003 field campaign held during the spring of 2003 in the Mexico City Metropolitan Area (MCMA). The measured emission ratios represent a sample of emissions of in-use vehicles under real world driving conditions for the MCMA. From the relative amounts of NOx and selected VOC's sampled, the results indicate that the technique is capable of differentiating among vehicle categories and fuel type in real world driving conditions. Emission ratios for NOx, NOy, NH3, H2CO, CH3CHO, and other selected volatile organic compounds (VOCs) are presented for chase sampled vehicles in the form of frequency distributions as well as estimates for the fleet averaged emissions. Our measurements of emission ratios for both CNG and gasoline powered "colectivos" (public transportation buses that are intensively used in the MCMA) indicate that – in a mole per mole basis – have significantly larger NOx and aldehydes emissions ratios as compared to other sampled vehicles in the MCMA. Similarly, ratios of selected VOCs and NOy showed a strong dependence on traffic mode. These results are compared with the vehicle emissions inventory for the MCMA, other vehicle emissions measurements in the MCMA, and measurements of on-road emissions in U.S. cities. We estimate NOx emissions as 100 600±29 200 metric tons per year for light duty gasoline vehicles in the MCMA for 2003. According to these results, annual NOx emissions estimated in the emissions inventory for this category are within the range of our estimated NOx annual emissions. Our estimates for motor vehicle emissions of benzene, toluene, formaldehyde, and acetaldehyde in the MCMA indicate these species are present in concentrations higher than previously reported. The high motor vehicle aldehyde emissions may have an impact on the photochemistry of urban areas.
[Ng2006] Ng, N. L., J. H. Kroll, M. D. Keywood, R. Bahreini, V. Varutbangkul, R. C. Flagan, J. H. Seinfeld, A. Lee, and A. H. Goldstein, "Contribution of first- versus second-generation products to secondary organic aerosols formed in the oxidation of biogenic hydrocarbons.", Environ Sci Technol, vol. 40, no. 7: Department of Environmental Science, California Institute of Technology, Pasadena, California 91125, USA., pp. 2283–2297, Apr, 2006.
Link: http://pubs.acs.org/doi/abs/10.1021/es052269u
Abstract
Biogenic hydrocarbons emitted by vegetation are important contributors to secondary organic aerosol (SOA), but the aerosol formation mechanisms are incompletely understood. In this study, the formation of aerosols and gas-phase products from the ozonolysis and photooxidation of a series of biogenic hydrocarbons (isoprene, 8 monoterpenes, 4 sesquiterpenes, and 3 oxygenated terpenes) are examined. By comparing aerosol growth (measured by Differential Mobility Analyzers, DMAs) and gas-phase concentrations (monitored by a Proton Transfer Reaction Mass Spectrometer, PTR-MS), we study the general mechanisms of SOA formation. Aerosol growth data are presented in terms of a "growth curve", a plot of aerosol mass formed versus the amount of hydrocarbon reacted. From the shapes of the growth curves, it is found that all the hydrocarbons studied can be classified into two groups based entirely on the number of double bonds of the hydrocarbon, regardless of the reaction systems (ozonolysis or photooxidation) and the types of hydrocarbons studied: compounds with only one double bond and compounds with more than one double bond. For compounds with only one double bond, the first oxidation step is rate-limiting, and aerosols are formed mainly from low volatility first-generation oxidation products; whereas for compounds with more than one double bond, the second oxidation step may also be rate-limiting and second-generation products contribute substantially to SOA growth. This behavior is characterized by a vertical section in the growth curve, in which continued aerosol growth is observed even after all the parent hydrocarbon is consumed.
[Biasioli2006] Biasioli, F., F. Gasperi, E. Aprea, I. Endrizzi, V. Framondino, F. Marini, D. Mott, and T. D. Maerk, "Correlation of PTR-MS spectral fingerprints with sensory characterisation of flavour and odour profile of "Trentingrana" cheese", Food quality and preference, vol. 17, no. 1: Elsevier, pp. 63–75, 2006.
Link: http://www.sciencedirect.com/science/article/pii/S095032930500090X
Abstract
Proton transfer reaction-mass spectrometry (PTR-MS) is a relatively new technique that allows the fast and accurate detection of volatile organic compounds. The paper discusses the possibility of correlating the PTR-MS spectral fingerprint of the mixture of volatile compounds present in the head-space of 20 samples of “Trentingrana”, the variety of Grana Padano produced in Trentino (Northern Italy), with the sensory evaluation (Quantitative Descriptive Analysis) of the same samples obtained by a panel of trained judges. Only attributes related to odours (six attributes) and flavours (six attributes) are considered. Results of descriptive statistics are shown and the performances of different multivariate calibration methods (Partial Least Squares, both PLS1 and PLS2) are compared by evaluating the errors in the cross-validated estimation of the sensory attributes. PLS2 seems to give a good average description providing an overall insight of the problem but does not provide an accurate prediction of the individual sensory attributes. PLS1 analysis is more accurate and performs well in most cases but it uses several latent variables, so that the interpretation of the loadings is not straightforward. The preliminary application of Orthogonal Signal Correction filtering on PTR-MS spectra followed by PLS1 analysis results in a good estimation for most of the attributes and has the advantage to use only one or two latent variables. Comparison with other works and a tentative indication of the compounds correlated with sensory description are reported.
[Klemm2006] Klemm, O., A. Held, R. Forkel, R. Gasche, H-J. Kanter, B. Rappenglück, R. Steinbrecher, K. Müller, A. Plewka, C. Cojocariu, et al., "Experiments on forest/atmosphere exchange: Climatology and fluxes during two summer campaigns in NE Bavaria", Atmospheric Environment, vol. 40: Elsevier, pp. 3–20, 2006.
Link: http://www.sciencedirect.com/science/article/pii/S1352231006003165
Abstract
During two summer field campaigns in 2001 and 2002, biosphere/atmosphere exchange fluxes of energy, gases, and particles were quantified in a Norway spruce forest in NE Bavaria at 775 m a.s.l. The overall goal of the BEWA campaigns was to study the influence of the emissions of reactive biogenic volatile organic compounds (BVOCs) on chemical and physical processes in the atmosphere, and an overview over the meteorological conditions, experimental frame, and the achieved results is provided. A rigorous quality assurance/quality control plan was implemented. From analysis of meteorological conditions and experimental success, golden day periods were selected for coordinated data analysis. These periods cover typical summertime conditions with various wind directions, NOx mixing ratios between 2 and 10 ppb, and O3 mixing ratios ranging between 13 and 98 ppb. Diurnal patterns of trace gas concentrations resulted from the dynamics of the boundary layer, from regional atmospheric processes (for example production of O3 in the atmosphere), and deposition. Turbulence also exhibited a diurnal pattern indicating thermal production during daytime and calm conditions during nighttime. However, in many cases, turbulence was often well developed during the nights. Horizontal advection of air masses into the trunk space occurred due to the patchiness of the forest. Nevertheless, for most conditions, the application of a one-dimensional model to describe the vertical exchange processes was appropriate. Therefore, the use of one single meteorological tower to study biosphere/atmosphere exchange is valid. Measured turbulent vertical exchange fluxes were estimated to be representative within an error of less than 25%. The results for VOC concentrations and fluxes were rather heterogeneous. Both model and measurements demonstrated that the Norway spruce trees acted as a weak source of formaldehyde.
[Tamas2006] Tamas, G., C. J. Weschler, Z. Bako-Biro, D. P. Wyon, and P. Strøm-Tejsen, "Factors affecting ozone removal rates in a simulated aircraft cabin environment", Atmospheric environment, vol. 40, no. 32: Elsevier, pp. 6122–6133, 2006.
Link: http://www.sciencedirect.com/science/article/pii/S1352231006005152
Abstract
Ozone concentrations were measured concurrently inside a simulated aircraft cabin and in the airstream providing ventilation air to the cabin. Ozone decay rates were also measured after cessation of ozone injection into the supply airstream. By systematically varying the presence or absence of people, soiled T-shirts, aircraft seats and a used HEPA filter, we have been able in the course of 24 experiments to isolate the contributions of these and other factors to the removal of ozone from the cabin air. In the case of this simulated aircraft, people were responsible for almost 60% of the ozone removal occurring within the cabin and recirculation system; respiration can only have been responsible for about 4% of this removal. The aircraft seats removed about 25% of the ozone; the loaded HEPA filter, 7%; and the other surfaces, 10%. A T-shirt that had been slept in overnight removed roughly 70% as much ozone as a person, indicating the importance of skin oils in ozone removal. The presence of the used HEPA filter in the recirculated airstream reduced the perceived air quality. Over a 5-h period, the overall ozone removal rate by cabin surfaces decreased at ∼3% h−1. With people present, the measured ratio of ozone's concentration in the cabin versus that outside the cabin was 0.15–0.21, smaller than levels reported in the literature. The results reinforce the conclusion that the optimal way to reduce people's exposure to both ozone and ozone oxidation products is to efficiently remove ozone from the air supply system of an aircraft.
[1500] Lee, A., A. H. Goldstein, M. D. Keywood, S. Gao, V. Varutbangkul, R. Bahreini, N. L. Ng, R. C. Flagan, and J. H. Seinfeld, "Gas-phase products and secondary aerosol yields from the ozonolysis of ten different terpenes", Journal of Geophysical Research, vol. 111, 2006.
Link: http://nature.berkeley.edu/ahg/pubs/gas.pdf
Abstract
<p>The ozonolyses of six monoterpenes (α-pinene, β-pinene, 3-carene, terpinolene, α-terpinene, and myrcene), two sesquiterpenes (α-humulene and β-caryophyllene), and two oxygenated terpenes (methyl chavicol and linalool) were conducted individually in Teflon chambers to examine the gas-phase oxidation product and secondary organic aerosol (SOA) yields from these reactions. Particle size distribution and number concentration were monitored and allowed for the calculation of the SOA yield from each experiment, which ranged from 1 to 54%. A proton transfer reaction mass spectrometer (PTR-MS) was used to monitor the evolution of gas-phase products, identified by their mass to charge ratio (m/z). Several gas-phase oxidation products, formaldehyde, acetaldehyde, formic acid, acetone, acetic acid, and nopinone, were identified and calibrated. Aerosol yields, and the yields of these identified and calibrated oxidation products, as well as many higher m/z oxidation products observed with the PTR-MS, varied significantly between the different parent terpene compounds. The sum of measured oxidation products in the gas and particle phase ranged from 33 to 77% of the carbon in the reacted terpenes, suggesting there are still unmeasured products from these reactions. The observations of the higher molecular weight oxidation product ions provide evidence of previously unreported compounds and their temporal evolution in the smog chamber from multistep oxidation processes. Many of the observed ions, including m/z 111 and 113, have also been observed in ambient air above a Ponderosa pine forest canopy, and our results confirm they are consistent with products from terpene + O3 reactions. Many of these products are stable on the timescale of our experiments and can therefore be monitored in field campaigns as evidence for ozone oxidative chemistry.</p>
[1502] Lee, A., A. H. Goldstein, J. H. Kroll, N. L. Ng, V. Varutbangkul, R. C. Flagan, and J. H. Seinfeld, "Gas-phase products and secondary aerosol yields from the photooxidation of 16 different terpenes", Journal of Geophysical Research, vol. 111, 2006.
Link: http://dx.doi.org/10.1029/2006JD007050
Abstract
<p>The photooxidation of isoprene, eight monoterpenes, three oxygenated monoterpenes, and four sesquiterpenes were conducted individually at the Caltech Indoor Chamber Facility under atmospherically relevant HC:NOx ratios to monitor the time evolution and yields of SOA and gas-phase oxidation products using PTR-MS. Several oxidation products were calibrated in the PTR-MS, including formaldehyde, acetaldehyde, formic acid, acetone, acetic acid, nopinone, methacrolein + methyl vinyl ketone; other oxidation products were inferred from known fragmentation patterns, such as pinonaldehyde; and other products were identified according to their mass to charge (m/z) ratio. Numerous unidentified products were formed, and the evolution of first- and second-generation products was clearly observed. SOA yields from the different terpenes ranged from 1 to 68%, and the total gas- plus particle-phase products accounted for &sim;50&ndash;100% of the reacted carbon. The carbon mass balance was poorest for the sesquiterpenes, suggesting that the observed products were underestimated or that additional products were formed but not detected by PTR-MS. Several second-generation products from isoprene photooxidation, including m/z 113, and ions corresponding to glycolaldehyde, hydroxyacetone, methylglyoxal, and hydroxycarbonyls, were detected. The detailed time series and relative yields of identified and unidentified products aid in elucidating reaction pathways and structures for the unidentified products. Many of the unidentified products from these experiments were also observed within and above the canopy of a Ponderosa pine plantation, confirming that many products of terpene oxidation can be detected in ambient air using PTR-MS, and are indicative of concurrent SOA formation.</p>
[Herndon2006] Herndon, S. C., T. Rogers, E. J. Dunlea, J. T. Jayne, R. Miake-Lye, and B. Knighton, "Hydrocarbon emissions from in-use commercial aircraft during airport operations.", Environ Sci Technol, vol. 40, no. 14: Aerodyne Research, Inc., Billerica, Massachusetts, USA. herndon@aerodyne.com, pp. 4406–4413, Jul, 2006.
Link: http://pubs.acs.org/doi/abs/10.1021/es051209l
Abstract
The emissions of selected hydrocarbons from in-use commercial aircraft at a major airport in the United States were characterized using proton-transfer reaction mass spectrometry (PTR-MS) and tunable infrared differential absorption spectroscopy (TILDAS) to probe the composition of diluted exhaust plumes downwind. The emission indices for formaldehyde, acetaldehyde, benzene, and toluene, as well as other hydrocarbon species, were determined through analysis of 45 intercepted plumes identified as being associated with specific aircraft. As would have been predicted for high bypass turbine engines, the hydrocarbon emission index was greater in idle and taxiway acceleration plumes relative to approach and takeoff plumes. The opposite was seen in total NOy emission index, which increased from idle to takeoff. Within the idle plumes sampled in this study, the median emission index for formaldehyde was 1.1 g of HCHO per kg of fuel. For the subset of hydrocarbons measured in this work, the idle emissions levels relative to formaldehyde agree well with those of previous studies. The projected total unburned hydrocarbons (UHC) deduced from the range of in-use idle plumes analyzed in this work is greater than a plausible range of engine types using the defined idle condition (7% of rated engine thrust) in the International Civil Aviation Organization (ICAO) databank reference.

Pages

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.