The world's leading PTR-MS company

Ultra-Sensitive Real-Time Trace Gas Analyzers  •  Modular TOF-MS for Research & OEM


You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!


Found 1 results
Title [ Year(Asc)]
Filters: Author is Schulz, Holger  [Clear All Filters]
[1597] Szymczak, W., J. Rozman, V. Höllriegl, M. Kistler, S. Keller, D. Peters, M. Kneipp, H. Schulz, C. Hoeschen, M. Klingenspor, et al., "Online breath gas analysis in unrestrained mice by hs-PTR-MS.", Mamm Genome, vol. 25, pp. 129–140, Apr, 2014.
<p>The phenotyping of genetic mouse models for human disorders may greatly benefit from breath gas analysis as a noninvasive tool to identify metabolic alterations in mice. Phenotyping screens such as the German Mouse Clinic demand investigations in unrestrained mice. Therefore, we adapted a breath screen in which exhaled volatile organic compounds (VOCs) were online monitored by proton transfer reaction mass spectrometry (hs-PTR-MS). The source strength of VOCs was derived from the dynamics in the accumulation profile of exhaled VOCs of a single mouse in a respirometry chamber. A careful survey of the accumulation revealed alterations in the source strength due to confounders, e.g., urine and feces. Moreover changes in the source strength of humidity were triggered by changes in locomotor behavior as mice showed a typical behavioral pattern from activity to settling down in the course of subsequent accumulation profiles. We demonstrated that metabolic changes caused by a dietary intervention, e.g., after feeding a high-fat diet (HFD) a sample of 14 male mice, still resulted in a statistically significant shift in the source strength of exhaled VOCs. Applying a normalization which was derived from the distribution of the source strength of humidity and accounted for varying locomotor behaviors improved the shift. Hence, breath gas analysis may provide a noninvasive, fast access to monitor the metabolic adaptation of a mouse to alterations in energy balance due to overfeeding or fasting and dietary macronutrient composition as well as a high potential for systemic phenotyping of mouse mutants, intervention studies, and drug testing in mice.</p>

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:


Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.


Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics


Download the latest version of the IONICON publication database as BibTeX.