The world's leading PTR-MS company

Ultra-Sensitive Real-Time Trace Gas Analyzers  •  Modular TOF-MS for Research & OEM


You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!


Found 3 results
Title [ Year(Asc)]
Search results for flux
Filters: Author is Fall, R  [Reset Search]
[Karl2003c] Karl, T., A. Guenther, C. Spirig, A. Hansel, and R. Fall, "Seasonal variation of biogenic VOC emissions above a mixed hardwood forest in northern Michigan", Geophysical Research Letters, vol. 30, no. 23: Wiley Online Library, 2003.
Fluxes of biogenic volatile organic compounds (VOCs) were measured at a hardwood forest in northern Michigan (UMBS, Prophet research site) over the course of the growing and senescing season. Methanol, acetaldehyde, acetone and isoprene were found to be the most abundant biogenic VOCs with maximum fluxes (mixing ratios in ppbv) of 2.0 mg m−2 h−1 (21.0), 1.0 mg m−2 h−1 (2.7), 1.6 mg m−2 h−1 (5.6) and 7.6 mg m−2 h−1 (6), respectively. The emission patterns show distinct seasonal changes and indicate a spring peak for methanol due to rapid leaf expansion and a fall peak for acetone and acetaldehyde most likely attributed to senescing and decaying biomass; isoprene emissions peaked as expected in the summer. We estimate potential source strengths of 8.9 Tg (C) y−1 methanol, 2.7 Tg (C) y−1 acetaldehyde and 7.0 Tg (C) y−1 acetone for deciduous temperate forests, which is a substantial contribution to the global atmospheric VOC budget.
[Warneke2002] Warneke, C., SL. Luxembourg, JA. De Gouw, HJI. Rinne, AB. Guenther, and R. Fall, "Disjunct eddy covariance measurements of oxygenated volatile organic compounds fluxes from an alfalfa field before and after cutting", Journal of geophysical research, vol. 107, no. D8: American Geophysical Union, pp. 4067, 2002.
[1] There is interest in and significant uncertainty about the emissions of oxygenated volatile organic compounds (oxVOCs) from vegetation to the atmosphere. Here, we measured the fluxes of selected oxVOCs from an alfalfa field, before, during, and after cutting, using a combination of disjunct eddy covariance and proton-transfer-reaction mass spectrometry. Over the course of 1 day a significant methanol flux of 4 mg m−2 h−1 was observed from undisturbed alfalfa with a maximum at 0800 LT, possibly caused by the evaporation of dew. A smaller release of hexenals during this day (0.04 mg m−2 h−1) demonstrated the sensitivity of the method. Other results suggested that acetaldehyde and acetone were released in the afternoon but were lost by dry deposition in the evening and morning; deposition velocities were estimated to be 0.2 cm s−1 (acetaldehyde) and 0.09 cm s−1 (acetone). After the alfalfa was cut the emissions of methanol, acetaldehyde, acetone, and hexenals were significantly enhanced and remained high for three days during which the alfalfa was drying. After a rainstorm the oxVOC emissions from the cut, wet alfalfa increased even more. Nighttime measurements yielded low oxVOC fluxes in general, but the high variability of the concentrations during the night and the high degree of correlation between different oxVOCs suggest that the nighttime releases of oxVOCs from alfalfa were nonzero. This work suggests that the global source of oxVOCs due to the production of hay is of minor importance. The emission flux of methanol from vegetation during the growing season may be very large on a global basis.
[Karl2002] Karl, TG., C. Spirig, J. Rinne, C. Stroud, P. Prevost, J. Greenberg, R. Fall, and A. Guenther, "Virtual disjunct eddy covariance measurements of organic compound fluxes from a subalpine forest using proton transfer reaction mass spectrometry", Atmospheric Chemistry and Physics, vol. 2, no. 4: Copernicus GmbH, pp. 279–291, 2002.
A `virtual' disjunct eddy covariance (vDEC) device was tested with field measurements of biogenic VOC fluxes at a subalpine forest site in the Rocky Mountains of the USA. A PTR-MS instrument was used as the VOC sensor. Daily peak emission fluxes of 2-methyl-3-buten-2-ol (MBO), methanol, acetone and acetaldehyde were around 1.5, 1, 0.8 and 0.4 mg m-2 h-1, respectively. High pass filtering due to long sampling lines was investigated in laboratory experiments, and suggested that VOC losses in PTFA lines are generally governed by diffusion laws. Memory effects and surface reactions did not seem to play a dominant role. Model estimates of MBO fluxes compared well with measured fluxes. The results also suggest that latent heat and sensible heat fluxes are reasonably well correlated with VOC fluxes and could be used to predict variations in VOC emissions. The release of MBO, methanol, acetone and acetaldehyde resulted in significant change of tropospheric oxidant levels and a 10–40% increase in ozone levels, as inferred from a photochemical box model. We conclude that vDEC with a PTR-MS instrument is a versatile tool for simultaneous field analysis of multiple VOC fluxes.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:


Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.


Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics


Download the latest version of the IONICON publication database as BibTeX.