The world's leading PTR-MS company

Ultra-Sensitive Real-Time Trace Gas Analyzers  •  Modular TOF-MS for Research & OEM

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 68 results
Title [ Year(Asc)]
Filters: First Letter Of Title is A  [Clear All Filters]
2012
[Mueller2012] Müller, M., M. Graus, A. Wisthaler, A. Hansel, A. Metzger, J. Dommen, and U. Baltensperger, "Analysis of high mass resolution PTR-TOF mass spectra from 1, 3, 5-trimethylbenzene (TMB) environmental chamber experiments", Atmospheric Chemistry and Physics, vol. 12, no. 2: Copernicus GmbH, pp. 829–843, 2012.
Link: http://www.atmos-chem-phys.net/12/829/
Abstract
A series of 1,3,5-trimethylbenzene (TMB) photo-oxidation experiments was performed in the 27-m3 Paul Scherrer Institute environmental chamber under various NOx conditions. A University of Innsbruck prototype high resolution Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-TOF) was used for measurements of gas and particulate phase organics. The gas phase mass spectrum displayed  200 ion signals during the TMB photo-oxidation experiments. Molecular formulas CmHnNoOp were determined and ion signals were separated and grouped according to their C, O and N numbers. This allowed to determine the time evolution of the O:C ratio and of the average carbon oxidation state OSC of the reaction mixture. Both quantities were compared with master chemical mechanism (MCMv3.1) simulations. The O:C ratio in the particle phase was about twice the O:C ratio in the gas phase. Average carbon oxidation states of secondary organic aerosol (SOA) samples OSCSOA were in the range of −0.34 to −0.31, in agreement with expected average carbon oxidation states of fresh SOA (OSC = −0.5–0).
[Hansen2012a] Hansen, M. J., D. Liu, L. Bonne Guldberg, and A. Feilberg, "Application of proton-transfer-reaction mass spectrometry to the assessment of odorant removal in a biological air cleaner for pig production.", J Agric Food Chem, vol. 60, no. 10: Department of Engineering, Faculty of Science and Technology, Aarhus University, Tjele, Denmark. michaelj.hansen@agrsci.dk, pp. 2599–2606, Mar, 2012.
Link: http://dx.doi.org/10.1021/jf300182c
Abstract
There is an urgent need to develop odor reduction technologies for animal production facilities, and this requires a reliable measurement technique for estimating the removal of odorants. The purpose of the present experiment was to investigate the application of proton-transfer-reaction mass spectrometry (PTR-MS) for continuous measurements at a biofilter from SKOV A/S installed at a pig production facility. PTR-MS was able to handle the harsh conditions with high humidity and dust load in a biofilter and provide reliable data for the removal of odorants, including the highly odorous sulfur compounds. The biofilter removed 80-99% of carboxylic acids, aldehydes, ketones, phenols, and indoles and ca. 75% of hydrogen sulfide. However, only  0-15% of methanethiol and dimethyl sulfide was removed. In conclusion, PTR-MS is a promising tool that can be used to improve the development of biological air cleaning and other odor reduction technologies toward significant odorants.
[Kohl2012] Kohl, I.., J.. Dunkl, J.. Herbig, M.. Hubalek, H.. Fiegl, and M.. Daniaux, "Atemgasanalyse fuer eine zukuenftige nicht-invasive Medizin", GYNAEKOLOGISCHE ONKOLOGIE, vol. 6, pp. 21, 2012.
Link: http://www.medmedia.at/gyn-aktiv/zukunft-des-brustkrebsscreenings-atemgasanalyse-fur-eine-zukunftige-nicht-invasive-medizin/
Abstract
Die Zusammensetzung der Atemluft kann durch Erkrankungen verändert werden. Mit Hilfe von modernen analytischen Messmethoden versucht die Forschung, Zusammenhänge ­zwischen einzelnen Chemikalien und physiologischen bzw. pathologischen Vorgängen fest­zustellen. Ziel ist die nicht-invasive Frühdiagnostik von Krankheiten durch Atemgasanalysen. In einer Pilotstudie an der Innsbrucker Universitäts-Fraukenklinik wurden Atemgasproben von Brustkrebspatientinnen systematisch mit einer hochempfindlichen Methode analysiert. Eine ­signifikante ­Erniedrigung der Isopren-Konzentration der ausgeatmeten Luft vs. gesunde Kontrollen ist konsistent mit den ­Ergebnissen von Atemgasstudien bei Lungenkrebspatientinnen.
[Krug2012] Krug, S.., G.. Kastenmueller, F.. Stueckler, M.. J. Rist, T.. Skurk, M.. Sailer, J.. Raffler, W.. Roemisch-Margl, J.. Adamski, C.. Prehn, et al., "Atemgasanalyse fuer eine zukuenftige nicht-invasive Medizin", The FASEB Journal, Research Communication, vol. 12, pp. 2607, 2012.
Link: http://dx.doi.org/10.1096/fj.11-198093
Abstract
Metabolic challenge protocols, such as the oral glucose tolerance test, can uncover early alterations in metabolism preceding chronic diseases. Nevertheless, most metabolomics data accessible today reflect the fasting state. To analyze the dynamics of the human metabolome in response to environmental stimuli, we submitted 15 young healthy male volunteers to a highly controlled 4 d challenge protocol, including 36 h fasting, oral glucose and lipid tests, liquid test meals, physical exercise, and cold stress. Blood, urine, exhaled air, and breath condensate samples were analyzed on up to 56 time points by MS- and NMR-based methods, yielding 275 metabolic traits with a focus on lipids and amino acids. Here, we show that physiological challenges increased interindividual variation even in phenotypically similar volunteers, revealing metabotypes not observable in baseline metabolite profiles; volunteer-specific metabolite concentrations were consistently reflected in various biofluids; and readouts from a systematic model of β-oxidation (e.g., acetylcarnitine/palmitylcarnitine ratio) showed significant and stronger associations with physiological parameters (e.g., fat mass) than absolute metabolite concentrations, indicating that systematic models may aid in understanding individual challenge responses. Due to the multitude of analytical methods, challenges and sample types, our freely available metabolomics data set provides a unique reference for future metabolomics studies and for verification of systems biology models.
2011
[Warneke2011] Warneke, C., P. Veres, JS. Holloway, J. Stutz, C. Tsai, S. Alvarez, B. Rappenglueck, FC. Fehsenfeld, M. Graus, JB. Gilman, et al., "Airborne formaldehyde measurements using PTR-MS: calibration, humidity dependence, inter-comparison and initial results", Atmospheric Measurement Techniques Discussions, vol. 4, no. 4: Copernicus GmbH, pp. 4631–4665, 2011.
Link: http://www.atmos-meas-tech-discuss.net/4/4631/2011/amtd-4-4631-2011.html
Abstract
We present quantitative, fast time response measurements of formaldehyde (HCHO) onboard an aircraft using a Proton-Transfer-Reaction Mass-Spectrometry (PTR-MS) instrument. The HCHO measurement by PTR-MS is strongly humidity dependent and therefore airborne measurements are difficult and have not been reported. The PTR-MS instrument was run in the normal operating mode, where about 15 volatile organic compounds (VOCs) are measured together with HCHO onboard the NOAA WP-3 aircraft during the CalNex 2010 campaign in California. We compare the humidity dependence determined in the laboratory with in-flight calibrations of HCHO and calculate the HCHO mixing ratio during all flights using the results from both. The detection limit for HCHO was between 100 pptv in the dry free troposphere and 300 pptv in the humid marine boundary layer for a one second acquisition time every 17 s. The PTR-MS measurements are compared with HCHO measurements using a DOAS instrument and a Hantzsch monitor at a ground site in Pasadena. The PTR-MS agreed with both instruments within the stated uncertainties. We also compare HCHO enhancement ratios in the Los Angeles basin and in the free troposphere with literature values and find good agreement. The usefulness of the PTR-MS HCHO measurements in atmospheric observations is demonstrated by following an isolated anthropogenic plume. The photochemical production of HCHO can be observed simultaneously with production of acetaldehyde and the photochemical degradation of aromatic compounds using the PTR-MS.
[Kameyama2011] Kameyama, S., H. Tanimoto, S. Inomata, K. Suzuki, D. D. Komatsu, A. Hirota, U. Konno, and U. Tsunogai, "Application of PTR-MS to an incubation experiment of the marine diatom Thalassiosira pseudonana", Geochemical Journal, vol. 45, no. 5: Geochemical Society of Japan, pp. 355–363, 2011.
Link: http://eprints.lib.hokudai.ac.jp/dspace/handle/2115/50151
Abstract
Emission of trace gases from the marine diatom Thalassiosira pseudonana (CCMP 1335) was continuously monitored with a proton transfer reaction-mass spectrometry (PTR-MS) in an axenic batch culture system under a 13:11-h light:dark cycle. Substantial increases in the signals at m/z 49, 63, and 69, attributable to methanethiol, dimethyl sulfide (DMS), and isoprene, respectively, were observed in response to increases in cell density. Signals at m/z 69 showed diurnal variations throughout the experiment whereas those at m/z 49 were more pronounced at the beginning of the incubation. Interestingly, the signals at m/z 49 and 69 changed immediately following the light-dark and dark-light transitions, suggesting that light plays a crucial role in the production of methanethiol and isoprene. However, in the latter half of the experiment, methanethiol showed negligible diurnal variations regardless of light conditions, suggesting the production of methanethiol from enzymatic cleavage of DMS. The trend ill signals at m/z 63 was similar to that of the abundance of senescent cells plus cell debris rather than vegetative cells. The results suggest that aging or death of phytoplankton cells could also substantially control DMS production in natural waters along with the other microbial processes related to bacteria and zooplankton.
[Singer2011] Singer, W., J. Herbig, R. Gutmann, K. Winkler, I. Kohl, and A. Hansel, "Applications of PTR-MS in medicine and biotechnology", American Laboratory, vol. 43, no. 7: AMER LABORATORY-LABCOMPARE 30 CONTROLS DRIVE, SHELTON, CT 06484 USA, pp. 34–37, 2011.
Link: http://www.americanlaboratory.com/913-Technical-Articles/19001-Applications-of-PTR-MS-in-Medicine-and-Biotechnology/
Abstract
Proton transfer reaction-mass spectrometry (PTR-MS) is a well-established analytical tool for the measurement of volatile organic compounds (VOCs), and offers real-time detection and quantification of VOCs at trace concentrations. This paper focuses on the measurement of VOCs in biological systems. Both microorganisms and cells, e.g., in the human body, constantly produce a large variety of volatile organic metabolites. Analyzing VOCs in exhaled human breath reveals information about the status of the body. In a similar manner, monitoring the off-gas of fermentations in the biopharmaceutical industry allows microbial activity to be gauged. Undesired compounds (those that are harmful to the human body or impurities in biotechnical processes) can also be tracked in real time using the technique.
[Kohl2011a] Kohl, I.., J.. Dunkl, and A.. Hansel, "The average composition of exhaled breath of healthy women by PTR-TOF-MS", 5th International PTR-MS Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications, pp. 34, 2011.
Link: http://www.ionicon.com/sites/default/files/uploads/doc/contributions_ptr_ms_Conference_5.pdf
Abstract
We analysed the exhaled breath of a cohort of 50 healthy women using Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-TOF-MS). To ensure that end-tidal exhaled air was collected, we used a Breath Collecting Unit, which sampled breath gas only when the CO2 signal was high. Samples were stored in inert Silco cans and analysed subsequently by PTR-TOF-MS. Components are characterized by their sum formula and were extracted from the raw data by matching them with a list of candidate compounds. A description of the average composition of the investigated cohort is given. These data can be helpful to identify compounds in breath measurements with quadrupole PTRMS systems, where a separation of isobaric compounds is not possible.
2010
[Sprung2010] Sprung, D., and A. Zahn, "Acetone in the upper troposphere/lowermost stratosphere measured by the CARIBIC passenger aircraft: Distribution, seasonal cycle, and variability", Journal of Geophysical Research, vol. 115, no. D16: American Geophysical Union, pp. D16301, 2010.
Link: http://www.agu.org/pubs/crossref/2010/2009JD012099.shtml
Abstract
Mass-spectrometric measurements of acetone (CH3COCH3) have been performed monthly using a Lufthansa Airbus A340-600 passenger aircraft between February 2006 and December 2008. In total, 106 measurement flights (4 per month) were conducted between Germany and South America, North America, South Asia, and East Asia. Here measurements collected between 33°N and 56°N in the upper troposphere (UT) and lowermost stratosphere (LMS) at 9–12 km altitude are analyzed. By integrating data collected at 12 ozonesonde stations, ozone concentrations measured on flight are translated into a representative (mixing-based) altitude above the thermal tropopause. A strong seasonal variation of acetone occurs at the midlatitude tropopause with maxima of ∼900 parts per 1012 vol (pptv) in summer and minima of ∼200 pptv in midwinter. This seasonality propagates into the LMS in approximately 6 weeks with rapidly decreasing concentrations and increasing phase shifts reaching 2 km above the tropopause. Throughout the year, acetone and ozone are highly negatively correlated in the LMS with a mean linear correlation coefficient (R) of −0.93. This linear relationship marks the O3–acetone-based extratropical tropopause mixing layer (exTL). A “stratospheric intrusion height of acetone” (Zacetone) is defined that concurs with the vertical depth of the O3–CO-based exTL, namely, averaging ∼2.2 km but with slightly lower values in winter. Probability density functions (PDFs) and the course of the seasonal variation of acetone relative to the tropopause are interpreted regarding the in-mixing and subsequent dispersion of acetone in the LMS.
[Holzinger2010] Holzinger, R., J. Williams, F. Herrmann, J. Lelieveld, NM. Donahue, and T. Roeckmann, "Aerosol analysis using a Thermal-Desorption Proton-Transfer-Reaction Mass Spectrometer (TD-PTR-MS): a new approach to study processing of organic aerosols", Atmospheric chemistry and physics, vol. 10, no. 5: Copernicus Publications, pp. 2257–2267, 2010.
Link: http://igitur-archive.library.uu.nl/phys/2011-0323-200410/UUindex.html
Abstract
We present a novel analytical approach to measure the chemical composition of organic aerosol. The new instrument combines proton-transfer-reaction mass-spectrometry (PTR-MS) with a collection-thermal-desorption aerosol sampling technique. For secondary organic aerosol produced from the reaction of ozone with isoprenoids in a laboratory reactor, the TD-PTR-MS instrument detected typically 80% of the mass that was measured with a scanning mobility particle sizer (SMPS). The first field deployment of the instrument was the EUCAARI-IOP campaign at the CESAR tall tower site in the Netherlands. For masses with low background values (∼30% of all masses) the detection limit of aerosol compounds was below 0.2 ng/m3 which corresponds to a sampled compound mass of 35 pg. Comparison of thermograms from ambient samples and from chamber-derived secondary organic aerosol shows that, in general, organic compounds from ambient aerosol samples desorb at much higher temperatures than chamber samples. This suggests that chamber aerosol is not a good surrogate for ambient aerosol and therefore caution is advised when extrapolating results from chamber experiments to ambient conditions
[Holzinger2010a] Holzinger, R., A. Kasper-Giebl, M. Staudinger, G. Schauer, and T. Roeckmann, "Analysis of the chemical composition of organic aerosol at the Mt. Sonnblick observatory using a novel high mass resolution thermal-desorption proton-transfer-reaction mass-spectrometer (hr-TD-PTR-MS)", Atmospheric chemistry and physics, vol. 10, no. 20: Copernicus Publications, pp. 10111–10128, 2010.
Link: http://igitur-archive.library.uu.nl/phys/2011-0323-200408/UUindex.html
Abstract
For the first time a high mass resolution thermal desorption proton transfer reaction mass spectrometer (hr-TD-PTR-MS) was deployed in the field to analyze the composition of the organic fraction of aerosols. We report on measurements from the remote Mt. Sonnblick observatory in the Austrian alps (3108 m a.s.l.) during a 7 week period in summer 2009. A total of 638 mass peaks in the range 18-392 Da were detected and quantified in aerosols. An empirical formula was tentatively attributed to 464 of these compounds by custom-made data analysis routines which consider compounds containing C, H, O, N, and S atoms. Most of the other (unidentified) compounds must contain other elements – most likely halogenated compounds. The mean total concentration of all detected compounds was 1.1 μg mg-3. Oxygenated hydrocarbons constitute the bulk of the aerosol mass (75%) followed by organic nitrogen compounds (9%), inorganic compounds (mostly NH3, 8%), unidentified/halogenated (3.8%), hydrocarbons (2.7%), and organic sulfur compounds (0.8%). The measured O/C ratios are lower than expected and suggest a significant effect from charring. Organic carbon concentrations measured with TD-PTR-MS were about 25% lower than measurements on high volume filter samples
[Mayhew2010] Mayhew, CA., P. Sulzer, F. Petersson, S. Haidacher, A. Jordan, L. Maerk, P. Watts, and TD. Maerk, "Applications of proton transfer reaction time-of-flight mass spectrometry for the sensitive and rapid real-time detection of solid high explosives", International Journal of Mass Spectrometry, vol. 289, no. 1: Elsevier, pp. 58–63, 2010.
Link: http://www.sciencedirect.com/science/article/pii/S1387380609002875
Abstract
Using recent developments in proton transfer reaction mass spectrometry, proof-of-principle investigations are reported here to illustrate the capabilities of detecting solid explosives in real-time. Two proton transfer reaction time-of-flight mass spectrometers (Ionicon Analytik) have been used in this study. One has an enhanced mass resolution (m/Δm up to 8000) and high sensitivity (∼50 cps/ppbv). The second has enhanced sensitivity (∼250 cps/ppbv) whilst still retaining high resolution capabilities (m/Δm up to 2000). Both of these instruments have been successfully used to identify solid explosives (RDX, TNT, HMX, PETN and Semtex A) by analyzing the headspace above small quantities of samples at room temperature and from trace quantities not visible to the naked eye placed on surfaces. For the trace measurements a simple pre-concentration and thermal desorption technique was devised and used. Importantly, we demonstrate the unambiguous identification of threat agents in complex chemical environments, where multiple threat agents and interferents may be present, thereby eliminating false positives. This is of considerable benefit to security and for the fight against terrorism.
2009
[Knighton2009a] Knighton, WB., EC. Fortner, SC. Herndon, EC. Wood, and RC. Miake-Lye, "Adaptation of a proton transfer reaction mass spectrometer instrument to employ NO+ as reagent ion for the detection of 1, 3-butadiene in the ambient atmosphere", Rapid Communications in Mass Spectrometry, vol. 23, no. 20: Wiley Online Library, pp. 3301–3308, 2009.
Link: http://onlinelibrary.wiley.com/doi/10.1002/rcm.4249/full
Abstract
A proton transfer reaction mass spectrometer (PTR-MS) instrument was adapted to employ NO+ as a chemical reagent ion without any hardware changes by switching the reagent ion source gas from water vapor to dry air. Ionization of dry air within the hollow cathode ion source generates a very intense source of NO+ with only a minor impurity of NOmath image. The intensities of the primary NO+ reagent ion and the unwanted impurity NOmath image are controllable and dependent on the operational conditions of the hollow cathode ion source. Ion source tuning parameters are described, which maintain an intense source of NO+ while keeping the impurity NOmath image signal to less than 2% of the total reagent ion intensity. This method is applied to the detection of 1,3-butadiene. NO+ reacts efficiently with 1,3-butadiene via a charge exchange reaction to produce only the molecular ion, which is detected at m/z 54. Detection sensitivities of the order of 45 pptv for a 1-s measurement of 1,3-butadiene are demonstrated. We present the first real-time on-line sub parts per billion measurement of 1,3-butadiene in the ambient atmosphere. The only likely interference is from 1,2-butadiene. Concurrent measurements of benzene are provided and suggest that the vehicular emissions are the predominant source of 1,3-butadiene in a suburban Boston area monitoring location.
[1583] Knighton, W.. B., E.. C. Fortner, S.. C. Herndon, E.. C. Wood, and R.. C. Miake-Lye, "Adaptation of a proton transfer reaction mass spectrometer instrument to employ NO+ as reagent ion for the detection of 1,3-butadiene in the ambient atmosphere.", Rapid Commun Mass Spectrom, vol. 23, pp. 3301–3308, Oct, 2009.
Link: http://dx.doi.org/10.1002/rcm.4249
Abstract
<p>A proton transfer reaction mass spectrometer (PTR-MS) instrument was adapted to employ NO+ as a chemical reagent ion without any hardware changes by switching the reagent ion source gas from water vapor to dry air. Ionization of dry air within the hollow cathode ion source generates a very intense source of NO+ with only a minor impurity of NO2+. The intensities of the primary NO+ reagent ion and the unwanted impurity NO2+ are controllable and dependent on the operational conditions of the hollow cathode ion source. Ion source tuning parameters are described, which maintain an intense source of NO+ while keeping the impurity NO2+ signal to less than 2% of the total reagent ion intensity. This method is applied to the detection of 1,3-butadiene. NO+ reacts efficiently with 1,3-butadiene via a charge exchange reaction to produce only the molecular ion, which is detected at m/z 54. Detection sensitivities of the order of 45 pptv for a 1-s measurement of 1,3-butadiene are demonstrated. We present the first real-time on-line sub parts per billion measurement of 1,3-butadiene in the ambient atmosphere. The only likely interference is from 1,2-butadiene. Concurrent measurements of benzene are provided and suggest that the vehicular emissions are the predominant source of 1,3-butadiene in a suburban Boston area monitoring location.</p>
[Sulzer2009] Sulzer, P., A. Jordan, G. Hanel, E. Hartungen, H. Seehauser, L. Märk, S. Haidacher, R. Schottkowsky, and TD. Märk, "Advantages of Proton Transfer Reaction Advantages of Proton Transfer Reaction–Mass Spectrometry (PTR Mass Spectrometry (PTR-MS) in the Analysis of Potentially Dangerous Substances", : IONICON Analytik, 2009.
Link: http://www.ionicon.com/downloads/IONICON_Dangerous_substances_Euroanalysis_poster.pdf
[Titzmann2009] Titzmann, T., I. Kohl, and J. Beauchamp, "Analysis of inspiration/expiration air", , no. EP2042866, 2009.
Link: http://www.freepatentsonline.com/EP2042866.html
[Heenan2009a] Heenan, S., N. Hamid, J-P. Dufour, W. Harvey, and C. Delahunty, "Application of PTR-MS to measure perceived freshness of model cakes varying in different sweetener, fat types and shelf-life", CONFERENCE SERIES, pp. 81, 2009.
Link: http://www.ionicon.com/sites/default/files/uploads/doc/contributions_ptr_ms_Conference_4.pdf
[Schripp2009] Schripp, T., C. Fauck, D. Markewitz, and T. Salthammer, "Application of the PTR-MS for the emission test of building products", CONFERENCE SERIES, pp. 284, 2009.
Link: http://www.ionicon.com/sites/default/files/uploads/doc/contributions_ptr_ms_Conference_4.pdf
[LeQuere2009] Le Quéré, J-L., I. Déléris, E. Sémon, A. Saint-Eve, and I. Souchon, "Aroma Release with Atmospheric Pressure Chemical Ionization (APCI-) and Proton Transfer Reaction (PTR-) Mass Spectrometry: Competition and Quantitative Aspects", CONFERENCE SERIES, pp. 252, 2009.
Link: http://www.ionicon.com/sites/default/files/uploads/doc/contributions_ptr_ms_Conference_4.pdf
2008
[Ngwabie2008] Ngwabie, N. Martin, G. W. Schade, T. G. Custer, S. Linke, and T. Hinz, "Abundances and flux estimates of volatile organic compounds from a dairy cowshed in Germany", Journal of environmental quality, vol. 37, no. 2: American Society of Agronomy, Crop Science Society of America, Soil Science Society, pp. 565–573, 2008.
Link: https://dl.sciencesocieties.org/publications/jeq/abstracts/37/2/565
Abstract
Animal husbandry and manure treatment have been specifically documented as significant sources of methane, ammonia, nitrous oxide, and particulate matter. Although volatile organic compounds (VOCs) are also produced, much less information exists concerning their impact. We report on chemical ionization mass spectrometry and photo-acoustic spectroscopy measurements of mixing ratios of VOCs over a 2-wk measurement period in a large cowshed at the Federal Agricultural Research Centre (FAL) in Mariensee, Germany. The high time resolution of these measurements enables insight into the sources of the emissions in a typical livestock management setting. During feeding hours and solid manure removal, large mixing ratio spikes of several VOCs were observed and correlated with simultaneous methane, carbon dioxide, and ammonia level enhancements. The subsequent decay of cowshed concentration due to passive cowshed ventilation was used to model emission rates, which were dominated by ethanol and acetic acid, followed by methanol. Correlations of VOC mixing ratios with methane or ammonia were also used to calculate cowshed emission factors and to estimate potential nationwide VOC emissions from dairy cows. The results ranged from around 0.1 Gg carbon per year (1 Gg = 109 g) for nonanal and dimethylsulfide, several Gg carbon per year for volatile fatty acids and methanol, to over 10 Gg carbon per year of emitted ethanol. While some estimates were not consistent between the two extrapolation methods, the results indicate that animal husbandry VOC emissions are dominated by oxygenated compounds and may be a nationally but not globally significant emission to the atmosphere.
2007
[Sinha2007] Sinha, V., J. Williams, M. Meyerhöfer, U. Riebesell, AI. Paulino, and A. Larsen, "Air-sea fluxes of methanol, acetone, acetaldehyde, isoprene and DMS from a Norwegian fjord following a phytoplankton bloom in a mesocosm experiment", Atmospheric Chemistry and Physics, vol. 7, no. 3: Copernicus GmbH, pp. 739–755, 2007.
Link: http://www.atmos-chem-phys.net/7/739/2007/acp-7-739-2007.html
Abstract
{The ocean's influence on volatile organic compounds (VOCs) in the atmosphere is poorly understood. This work characterises the oceanic emission and/or uptake of methanol, acetone, acetaldehyde, isoprene and dimethyl sulphide (DMS) as a function of photosynthetically active radiation (PAR) and a suite of biological parameters. The measurements were taken following a phytoplankton bloom, in May/June 2005 with a proton transfer reaction mass spectrometer (PTR-MS), from mesocosm enclosures anchored in the Raunefjord, Southern Norway. The net flux of methanol was always into the ocean, and was stronger at night. Isoprene and acetaldehyde were emitted from the ocean, correlating with light (ravcorr
[Aprea2007a] Aprea, E., F. Biasioli, F. Gasperi, D. Mott, F. Marini, and T. D. Maerk, "Assessment of Trentingrana cheese ageing by proton transfer reaction-mass spectrometry and chemometrics", International dairy journal, vol. 17, no. 3: Elsevier, pp. 226–234, 2007.
Link: http://www.sciencedirect.com/science/article/pii/S0958694606000501
Abstract
Proton transfer reaction-mass spectrometry (PTR-MS) data have been analysed by chemometric techniques to monitor cheese ageing by means of on-line direct head-space gas analysis. Twenty cheese loaves of Trentingrana, a trademarked cheese produced in northern Italy, of different origin and ripening degree, were sampled over the whole Trentingrana production area. An increase of the spectral intensity with ripening has been observed for most of the PTR-MS peaks and a univariate analysis identified 16 mass peaks that were significantly different for ripened and young cheeses, respectively. Moreover, the usefulness of different discriminant analyses and class modelling techniques have been investigated. Discriminant Partial Least Squares analysis, while indicating average behaviour and possible outliers, was not able to correctly classify all samples. Soft class modelling performed better and allowed a 100% correct classification. Partial least square calibration predicted the ageing time of each loaf with reasonable accuracy with a maximum cross-validation error of 3.5 months.
2006
[Colomb2006] Colomb, A., J. Williams, J. Crowley, V. Gros, R. Hofmann, G. Salisbury, T. Klüpfel, R. Kormann, A. Stickler, C. Forster, et al., "Airborne measurements of trace organic species in the upper troposphere over Europe: the impact of deep convection", Environmental Chemistry, vol. 3, no. 4: CSIRO, pp. 244–259, 2006.
Link: http://www.publish.csiro.au/?paper=EN06020
Abstract
The volume mixing ratios of several organic trace gases and ozone (O3) were measured in the upper troposphere over Europe during the UTOPIHAN-ACT aircraft campaign in July 2003. The organic trace gases included alkanes, isoprene, aromatics, iodomethane, and trichloroethylene, oxygenates such as acetone, methanol, formaldehyde, carbon monoxide, and longer-lived tracer species such as chlorofluorocarbons and halochloroflurocarbons. The aim of the UTOPIHAN-ACT project was to study the chemical impact of deep convection on the continental upper troposphere. A Lear Jet aircraft, based in Germany, was flown at heights between 6 and 13 km in the region 59°N–42°N to 7°W–13°E during July 2003. Overall, the convectively influenced measurements presented here show a weaker variability lifetime dependence of trace gases than similar measurements collected over the Mediterranean region under more stable high-pressure conditions. Several cases of convective outflow are identified by the elevated mixing ratios of organic species relative to quiescent background conditions, with both biogenic and anthropogenic influences detectable in the upper troposphere. Enhancement at higher altitudes, notably of species with relatively short chemical lifetimes such as benzene, toluene, and even isoprene indicates deep convection over short timescales during summertime. The impact of deep convection on the local upper tropospheric formaldehyde and HOx budgets is assessed.
2005
[Aprea2005] Aprea, E., F. Biasioli, F. Gasperi, G. Sani, C. Cantini, and T. D. Maerk, "Advanced oxidation in olive oil: monitoring of secondary reaction products and detection of rancid defect", Mass Spectrometry and Its Applications, vol. -, pp. 144, 2005.
Link: http://www.uibk.ac.at/iup/infofolder/contributions_ptrms.pdf#page=155
[Graus2005] Graus, M., JP. Schnitzler, J. Kreuzwieser, U. Heizmann, H. Rennenberg, A. Wisthaler, and A. Hansel, "Alternative Carbon Sources for Leaf Isoprene Formation", Mass Spectrometry and Its Applications, pp. 19, 2005.
Link: http://www.uibk.ac.at/iup/infofolder/contributions_ptrms.pdf#page=30

Pages

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.