The world's leading PTR-MS company

Ultra-Sensitive Real-Time Trace Gas Analyzers  •  Modular TOF-MS for Research & OEM

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 2 results
Title [ Year(Asc)]
Filters: First Letter Of Title is U and Author is Tani, Akira  [Clear All Filters]
2010
[Tani2010] Tani, A., S. Tobe, and S. Shimizu, "Uptake of methacrolein and methyl vinyl ketone by tree saplings and implications for forest atmosphere", Environmental science & technology, vol. 44, no. 18: ACS Publications, pp. 7096–7101, 2010.
Link: http://pubs.acs.org/doi/abs/10.1021/es1017569
Abstract
Methacrolein (MACR) and methyl vinyl ketone (MVK) are oxygenates produced from isoprene which is abundantly emitted by trees. The uptake rate of these compounds by leaves of three different Quercus species, Q. acutissima, Q. myrsinaefolia, and Q. phillyraeoides, at typical concentrations within a forest (several part per billion by volume) were determined. The rates of uptake of croton aldehyde (CA) and methyl ethyl ketone (MEK) were also investigated for comparison. The rates of uptake of the two aldehydes MACR and CA were found to be higher than those of the two ketones. In particular, the rate of MEK uptake for Q. myrsinaefolia was exceptionally low. The ratio of intercellular to fumigated concentrations, Ci/Ca, for MACR and CA was found to be low (0−0.24), while the ratio for the two ketones was 0.22−0.90. To evaluate the contribution of tree uptake as a sink for the two isoprene-oxygenates within the forest canopy, loss rates of the compounds due to uptake by trees and by reactions with hydroxyl radicals (OH radicals) and O3 were calculated. The loss rate by tree uptake was the highest, followed by the reaction with OH radicals, even at a high OH concentration (0.15 pptv) both for MACR and MVK, suggesting that tree uptake provides a significant sink.
2009
[Tani2009] Tani, A., and N. C Hewitt, "Uptake of aldehydes and ketones at typical indoor concentrations by houseplants", Environmental science & technology, vol. 43, no. 21: ACS Publications, pp. 8338–8343, 2009.
Link: http://pubs.acs.org/doi/abs/10.1021/es9020316
Abstract
The uptake rates of low-molecular weight aldehydes and ketones by peace lily (Spathiphyllum clevelandii) and golden pothos (Epipremnum aureum) leaves at typical indoor ambient concentrations (101−102 ppbv) were determined. The C3−C6 aldehydes and C4−C6 ketones were taken up by the plant leaves, but the C3 ketone acetone was not. The uptake rate normalized to the ambient concentration Ca ranged from 7 to 19 mmol m−2 s−1 and from 2 to 7 mmol m−2 s−1 for the aldehydes and ketones, respectively. Longer-term fumigation results revealed that the total uptake amounts were 30−100 times as much as the amounts dissolved in the leaf, suggesting that volatile organic carbons are metabolized in the leaf and/or translocated through the petiole. The ratio of the intercellular concentration to the external (ambient) concentration (Ci/Ca) was significantly lower for most aldehydes than for most ketones. In particular, a linear unsaturated aldehyde, crotonaldehyde, had a Ci/Ca ratio of 0, probably because of its highest solubility in water.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.