The world's leading PTR-MS company

Ultra-Sensitive Real-Time Trace Gas Analyzers  •  Modular TOF-MS for Research & OEM

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 1 results
Title [ Year(Desc)]
Filters: First Letter Of Title is Q and Author is Dewulf, Jo  [Clear All Filters]
2010
[Joo2010a] Joó, É., J. Dewulf, M. Demarcke, C. Amelynck, N. Schoon, J-F. Müller, M. Šimpraga, K. Steppe, and H. Van Langenhove, "Quantification of interferences in PTR-MS measurements of monoterpene emissions from Fagus sylvatica L. using simultaneous TD-GC-MS measurements", International Journal of Mass Spectrometry, vol. 291, no. 1: Elsevier, pp. 90–95, 2010.
Link: http://www.sciencedirect.com/science/article/pii/S1387380610000357
Abstract
The interest in quantitative analysis of biogenic volatile organic compounds (BVOCs) emissions stems from their importance in atmospheric chemistry. In order to compare the most frequently used BVOC measurement techniques, simultaneous on-line PTR-MS and off-line GC-MS data collection was performed on a 3 years old Fagus sylvatica L. tree placed in a growth chamber. Using an internal standard (deuterated toluene) and applying the selective ion mode (SIM) resulted in significant improvements of monoterpene (MT) quantification by TD-GC-MS. PTR-MS quantification of MTs was based on the ion signal at m/z 137. In the course of the experiments the relative contribution of linalool compared to that of MTs was found to be up to 84%. Since this compound has also a PTR-MS signature at m/z 137, quantification of MT emission rates by PTR-MS was disturbed. Comparison of GC-MS and PTR-MS data allowed an estimation of the ratio of the PTR-MS sensitivity for linalool to the one for MTs at m/z 137. This ratio of sensitivities, combined with the information of the relative contribution of linalool to the sum of linalool and MTs obtained by GC-MS, resulted in accurate derivation of the sum of emission rates of linalool and MTs by PTR-MS. The results indicate that fast and on-line PTR-MS measurements of BVOCs are best accompanied by off-line GC measurements to detect possible interferences or to use the additional information for properly quantifying the sum of emission rates of several compounds.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.