[1688]
Breiev, K., K. M. M. Burseg, G. OConnell, E. Hartungen, S. S. Biel, X. Cahours, S. Colard, T. D. Maerk, and P. Sulzer,
"An online method for the analysis of volatile organic compounds in electronic cigarette aerosol based on proton transfer reaction mass spectrometry",
Rapid Commun. Mass Spectrom., vol. 30, pp. 691–697, Feb, 2016.
Link:
http://dx.doi.org/10.1002/rcm.7487
<p>Rationale Due to the recent rapid increase in electronic cigarette (e-cigarette) use worldwide, there is a strong scientific but also practical interest in analyzing e-cigarette aerosols. Most studies to date have used standardized but time-consuming offline technologies. Here a proof-of-concept for a fast online quantification setup based on proton transfer reaction mass spectrometry (PTR-MS) is presented. Methods The combination of a novel sampling interface with a time-of-flight PTR-MS instrument specially designed for three scenarios is introduced: (i) mainstream aerosol analysis (aerosol that the user inhales prior to exhalation), and analysis of exhaled breath following (ii) mouth-hold (no inhalation) and (iii) inhalation of e-cigarette aerosols. A double-stage dilution setup allows the various concentration ranges in these scenarios to be accessed. Results First, the instrument is calibrated for the three principal constituents of the e-cigarettes' liquids, namely propylene glycol, vegetable glycerol and nicotine. With the double-stage dilution the instrument's dynamic range was easily adapted to cover the concentration ranges obtained in the three scenarios: 20–1100 ppmv for the mainstream aerosol characterisation; 4–300 ppmv for the mouth-hold; and 2 ppbv to 20 ppmv for the inhalation experiment. Conclusions It is demonstrated that the novel setup enables fast, high time resolution e-cigarette studies with online quantification. This enables the analysis and understanding of any puff-by-puff variations in e-cigarette aerosols. Large-scale studies involving a high number of volunteers will benefit from considerably higher sample throughput and shorter data processing times.</p>
[1819]
Sarkar, C., V. Sinha, V. Kumar, M. Rupakheti, A. Panday, K. S. Mahata, D. Rupakheti, B. Kathayat, and M. G. Lawrence,
"Overview of {VOC} emissions and chemistry from {PTR}-{TOF}-{MS} measurements during the {SusKat}-{ABC} campaign: high acetaldehyde, isoprene and isocyanic acid in wintertime air of the Kathmandu Valley",
Atmospheric Chemistry and Physics, vol. 16, pp. 3979–4003, mar, 2016.
Link:
https://www.atmos-chem-phys.net/16/3979/2016/acp-16-3979-2016.pdf
<p>The Kathmandu Valley in Nepal suffers from severe wintertime air pollution. Volatile organic compounds (VOCs) are key constituents of air pollution, though their specific role in the valley is poorly understood due to insufficient data. During the SusKat-ABC (Sustainable Atmosphere for the Kathmandu Valley–Atmospheric Brown Clouds) field campaign conducted in Nepal in the winter of 2012–2013, a comprehensive study was carried out to characterise the chemical composition of ambient Kathmandu air, including the determination of speciated VOCs, by deploying a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) – the first such deployment in South Asia. In the study, 71 ion peaks (for which measured ambient concentrations exceeded the 2σ detection limit) were detected in the PTR-TOF-MS mass scan data, highlighting the chemical complexity of ambient air in the valley. Of the 71 species, 37 were found to have campaign average concentrations greater than 200 ppt and were identified based on their spectral characteristics, ambient diel profiles and correlation with specific emission tracers as a result of the high mass resolution (m ∕ Δm  >  4200) and temporal resolution (1 min) of the PTR-TOF-MS. The concentration ranking in the average VOC mixing ratios during our wintertime deployment was acetaldehyde (8.8 ppb)  >  methanol (7.4 ppb)  >  acetone + propanal (4.2 ppb)  >  benzene (2.7 ppb)  >  toluene (1.5 ppb)  >  isoprene (1.1 ppb)  >  acetonitrile (1.1 ppb)  >  C8-aromatics ( ∼ 1 ppb)  >  furan ( ∼ 0.5 ppb)  >  C9-aromatics (0.4 ppb). Distinct diel profiles were observed for the nominal isobaric compounds isoprene (m ∕ z  =  69.070) and furan (m ∕ z  =  69.033). Comparison with wintertime measurements from several locations elsewhere in the world showed mixing ratios of acetaldehyde ( ∼  9 ppb), acetonitrile ( ∼  1 ppb) and isoprene ( ∼  1 ppb) to be among the highest reported to date. Two "new" ambient compounds, namely formamide (m ∕ z  =  46.029) and acetamide (m ∕ z  =  60.051), which can photochemically produce isocyanic acid in the atmosphere, are reported in this study along with nitromethane (a tracer for diesel exhaust), which has only recently been detected in ambient studies. Two distinct periods were selected during the campaign for detailed analysis: the first was associated with high wintertime emissions of biogenic isoprene and the second with elevated levels of ambient acetonitrile, benzene and isocyanic acid from biomass burning activities. Emissions from biomass burning and biomass co-fired brick kilns were found to be the dominant sources for compounds such as propyne, propene, benzene and propanenitrile, which correlated strongly with acetonitrile (r2 > 0.7), a chemical tracer for biomass burning. The calculated total VOC OH reactivity was dominated by acetaldehyde (24.0 %), isoprene (20.2 %) and propene (18.7 %), while oxygenated VOCs and isoprene collectively contributed to more than 68 % of the total ozone production potential. Based on known secondary organic aerosol (SOA) yields and measured ambient concentrations in the Kathmandu Valley, the relative SOA production potential of VOCs were benzene  >  naphthalene  >  toluene  >  xylenes  >  monoterpenes  >  trimethylbenzenes  >  styrene  >  isoprene. The first ambient measurements from any site in South Asia of compounds with significant health effects such as isocyanic acid, formamide, acetamide, naphthalene and nitromethane have been reported in this study. Our results suggest that mitigation of intense wintertime biomass burning activities, in particular point sources such biomass co-fired brick kilns, would be important to reduce the emission and formation of toxic VOCs (such as benzene and isocyanic acid) in the Kathmandu Valley.</p>
[1713]
Farré-Armengol, G., J. Penuelas, T. Li, P. Yli-Pirilä, I. Filella, J. Llusia, and J. D. Blande,
"Ozone degrades floral scent and reduces pollinator attraction to flowers.",
New Phytol, vol. 209, pp. 152–160, Jan, 2016.
Link:
http://dx.doi.org/10.1111/nph.13620
<p>In this work we analyzed the degradation of floral scent volatiles from Brassica nigra by reaction with ozone along a distance gradient and the consequences for pollinator attraction. For this purpose we used a reaction system comprising three reaction tubes in which we conducted measurements of floral volatiles using a proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS) and GC-MS. We also tested the effects of floral scent degradation on the responses of the generalist pollinator Bombus terrestris. The chemical analyses revealed that supplementing air with ozone led to an increasing reduction in the concentrations of floral volatiles in air with distance from the volatile source. The results revealed different reactivities with ozone for different floral scent constituents, which emphasized that ozone exposure not only degrades floral scents, but also changes the ratios of compounds in a scent blend. Behavioural tests revealed that floral scent was reduced in its attractiveness to pollinators after it had been exposed to 120 ppb O3 over a 4.5 m distance. The combined results of chemical analyses and behavioural responses of pollinators strongly suggest that high ozone concentrations have significant negative impacts on pollination by reducing the distance over which floral olfactory signals can be detected by pollinators.</p>