The world's leading PTR-MS company

Ultra-Sensitive Real-Time Trace Gas Analyzers  •  Modular TOF-MS for Research & OEM

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 6 results
Title [ Year(Asc)]
Filters: First Letter Of Title is E and Author is others  [Clear All Filters]
2015
[1794] Hu, L., D. B. Millet, M. Baasandorj, T. J. Griffis, K. R. Travis, C. W. Tessum, J. D. Marshall, W. F. Reinhart, T. Mikoviny, M. Müller, et al., "Emissions of C6–C8 aromatic compounds in the United States: Constraints from tall tower and aircraft measurements", Journal of Geophysical Research: Atmospheres, vol. 120, pp. 826–842, 2015.
Link: http://onlinelibrary.wiley.com/doi/10.1002/2014JD022627/abstract
Abstract
<p>We present two full years of continuous C6&ndash;C8 aromatic compound measurements by PTR-MS at the KCMP tall tower (Minnesota, US) and employ GEOS-Chem nested grid simulations in a Bayesian inversion to interpret the data in terms of new constraints on US aromatic emissions. Based on the tall tower data, we find that the RETRO inventory (year-2000) overestimates US C6&ndash;C8 aromatic emissions by factors of 2.0&ndash;4.5 during 2010&ndash;2011, likely due in part to post-2000 reductions. Likewise, our implementation of the US EPA&#39;s NEI08 overestimates the toluene flux by threefold, reflecting an inventory bias in non-road emissions plus uncertainties associated with species lumping. Our annual top-down emission estimates for benzene and C8 aromatics agree with the NEI08 bottom-up values, as does the inferred contribution from non-road sources. However, the NEI08 appears to underestimate on-road emissions of these compounds by twofold during the warm season. The implied aromatic sources upwind of North America are more than double the prior estimates, suggesting a substantial underestimate of East Asian emissions, or large increases there since 2000. Long-range transport exerts an important influence on ambient benzene over the US: on average 43% of its wintertime abundance in the US Upper Midwest is due to sources outside North America. Independent aircraft measurements show that the inventory biases found here for C6&ndash;C8 aromatics also apply to other parts of the US, with notable exceptions for toluene in California and Houston, Texas. Our best estimates of year-2011 contiguous US emissions are 206 (benzene), 408 (toluene), and 822 (C8 aromatics) GgC.</p>
2012
[Aaltonen2012] Aaltonen, H., and , "Exchange of volatile organic compounds in the boreal forest floor", : Helsingin yliopisto, 2012.
Link: https://helda.helsinki.fi/handle/10138/37593
Abstract
Terrestrial ecosystems, mainly plants, emit large amounts of volatile organic compounds (VOCs) into the atmosphere. In addition to plants, VOCs also have less-known sources, such as soil. VOCs are a very diverse group of reactive compounds, including terpenoids, alcohols, aldehydes and ketones. Due to their high reactivity, VOCs take part in chemical reactions in the atmosphere and thus also affect Earth s radiation balance. In this study, chamber and snow gradient techniques for measuring boreal soil and forest floor VOC fluxes were developed. Spatial and temporal variability in fluxes was studied with year-round measurements in the field and the sources of boreal soil VOCs in the laboratory with fungal isolates. Determination of the compounds was performed mass spectrometrically. This study reveals that VOCs from soil are emitted by living roots, above- and belowground litter and microbes. The strongest source appears to be litter, in which both plant residuals and decomposers play a role in the emissions. Temperature and moisture are the most critical physical factors driving VOC fluxes. Since the environment in boreal forests undergoes strong seasonal changes, the VOC flux strength of the forest floor varies markedly during the year, being highest in spring and autumn. The high spatial heterogeneity of the forest floor was also clearly visible in VOC fluxes. The fluxes of trace gases (CO2, CH4 and N2O) from soil, which are also related to the soil biological activity and physical conditions, did not correlate with the VOC fluxes. Our results show that emissions of VOCs from the boreal forest floor accounts for as much as several tens of percent, depending on the season, of the total forest ecosystem VOC emissions. This can be utilized in air chemistry models, which are almost entirely lacking the below-canopy compartment.
2010
[Jordan2010] Jordan, A., P. Sulzer, S. Juerschik, S. Jaksch, G. Hanel, E. Hartungen, H. Seehauser, L. Maerk, S. Haidacher, R. Schottkowsky, et al., "Extremely high mass resolution and sensitivity-comparison of two novel proton transfer reaction time-of-flight mass spectrometers (PTR-TOFMS)", Verhandlungen der Deutschen Physikalischen Gesellschaft, vol. -, no. Hanver 2010 issue, pp. -, 2010.
Link: https://www.etde.org/etdeweb/details_open.jsp?osti_id=21329230
Abstract
Since many years PTR-MS is a well established technique in trace gas analysis with its major advantages of having very short response times of below 100ms and outstanding detection limits in the single digit pptv region. However, the quadrupole mass filter based instruments used so far cannot separate isobaric compounds due to lack of mass resolution. To overcome this problem Ionicon developed the so called PTR-TOF 8000 instrument, which couples the well established PTR ionization technique with a high resolution time-of-flight (TOF) mass analyzer. In contrast to a quadrupole based PTR-MS where only one nominal mass at a time can be monitored, the PTR-TOF acquires whole mass spectra in split-seconds at a resolution of up to 8.000 m/{delta}m (FWHM). As there might be applications where an enormous mass resolution is not necessarily needed, but the sensitivity has to be as high as possible, we now developed an instrument (called PTR-TOF 2000) that performs with an enhanced sensitivity at the expense of a somewhat lower mass resolution.
2006
[Klemm2006] Klemm, O., A. Held, R. Forkel, R. Gasche, H-J. Kanter, B. Rappenglück, R. Steinbrecher, K. Müller, A. Plewka, C. Cojocariu, et al., "Experiments on forest/atmosphere exchange: Climatology and fluxes during two summer campaigns in NE Bavaria", Atmospheric Environment, vol. 40: Elsevier, pp. 3–20, 2006.
Link: http://www.sciencedirect.com/science/article/pii/S1352231006003165
Abstract
During two summer field campaigns in 2001 and 2002, biosphere/atmosphere exchange fluxes of energy, gases, and particles were quantified in a Norway spruce forest in NE Bavaria at 775 m a.s.l. The overall goal of the BEWA campaigns was to study the influence of the emissions of reactive biogenic volatile organic compounds (BVOCs) on chemical and physical processes in the atmosphere, and an overview over the meteorological conditions, experimental frame, and the achieved results is provided. A rigorous quality assurance/quality control plan was implemented. From analysis of meteorological conditions and experimental success, golden day periods were selected for coordinated data analysis. These periods cover typical summertime conditions with various wind directions, NOx mixing ratios between 2 and 10 ppb, and O3 mixing ratios ranging between 13 and 98 ppb. Diurnal patterns of trace gas concentrations resulted from the dynamics of the boundary layer, from regional atmospheric processes (for example production of O3 in the atmosphere), and deposition. Turbulence also exhibited a diurnal pattern indicating thermal production during daytime and calm conditions during nighttime. However, in many cases, turbulence was often well developed during the nights. Horizontal advection of air masses into the trunk space occurred due to the patchiness of the forest. Nevertheless, for most conditions, the application of a one-dimensional model to describe the vertical exchange processes was appropriate. Therefore, the use of one single meteorological tower to study biosphere/atmosphere exchange is valid. Measured turbulent vertical exchange fluxes were estimated to be representative within an error of less than 25%. The results for VOC concentrations and fluxes were rather heterogeneous. Both model and measurements demonstrated that the Norway spruce trees acted as a weak source of formaldehyde.
2005
[Spirig2005] Spirig, C., A. Neftel, C. Ammann, J. Dommen, W. Grabmer, A. Thielmann, A. Schaub, J. Beauchamp, A. Wisthaler, A. Hansel, et al., "Eddy covariance flux measurements of biogenic VOCs during ECHO 2003 using proton transfer reaction mass spectrometry", Atmospheric Chemistry and Physics, vol. 5, no. 2, pp. 465–481, 2005.
Link: http://hal.archives-ouvertes.fr/hal-00295614/
Abstract
Within the framework of the AFO 2000 project ECHO, two PTR-MS instruments were operated in combination with sonic anemometers to determine biogenic VOC fluxes from a mixed deciduous forest site in North-Western Germany. The measurement site was characterised by a forest of inhomogeneous composition, complex canopy structure, limited extension in certain wind directions and frequent calm wind conditions during night time. The eddy covariance (EC) technique was applied since it represents the most direct flux measurement approach on the canopy scale and is, therefore, least susceptible to these non-ideal conditions. A specific flux calculation method was used to account for the sequential multi-component PTR-MS measurements and allowing an individual delay time adjustment as well as a rigorous quality control based on cospectral analysis. The validated flux results are consistent with light and temperature dependent emissions of isoprene and monoterpenes from this forest, with average daytime emissions of 0.94 and 0.3µg m-2s-1, respectively. Emissions of methanol reached on average 0.087µg m-2s-1 during daytime, but fluxes were too small to be detected during night time. Upward fluxes of the isoprene oxidation products methyl vinyl ketone (MVK) and methacrolein (MACR) were also found, being two orders of magnitude lower than those of isoprene. Calculations with an analytical footprint model indicate that the observed isoprene fluxes correlate with the fraction of oaks within the footprints of the flux measurement.
2000
[Holzinger2000] Holzinger, R., L. Sandoval-Soto, S. Rottenberger, PJ. Crutzen, J. Kesselmeier, and , "Emissions of volatile organic compounds from Quercus ilex L. measured by proton transfer reaction mass spectrometry under different environmental conditions", Journal of Geophysical Research, vol. 105, no. D16, pp. 20573–20579, 2000.
Link: http://www.agu.org/journals/jd/jd0016/2000JD900296/pdf/2000JD900296.pdf

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.