The world's leading PTR-MS company

Ultra-Sensitive Real-Time Trace Gas Analyzers  •  Modular TOF-MS for Research & OEM

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 2 results
Title [ Year(Asc)]
Filters: First Letter Of Title is E and Author is Adamsen, Anders PS  [Clear All Filters]
2012
[Hansen2012c] Hansen, M. J., A. P. S. Adamsen, K. E. N. Jonassen, and A. Feilberg, "The effect of pit ventilation on the emission of odorants from pig production", CHEMICAL ENGINEERING, vol. 30, 2012.
Link: http://www.aidic.it/cet/12/30/039.pdf
2011
[Liu2011] Liu, D., A. Feilberg, A. P. S. Adamsen, and K. E. N. Jonassen, "The effect of slurry treatment including ozonation on odorant reduction measured by in-situ PTR-MS", Atmospheric Environment, vol. 45, no. 23: Elsevier, pp. 3786–3793, 2011.
Link: http://www.sciencedirect.com/science/article/pii/S1352231011004067
Abstract
The emission of odorous compounds from intensive pig production facilities is a nuisance for neighbors. Slurry ozonation for odor abatement has previously been demonstrated in laboratory scale. In this study, the effect of slurry ozonation (combined with solid–liquid pre-separation and acidification) on emissions of odorous compounds was tested in an experimental full-scale growing pig facility using Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) for online analysis of odorants. The measurements were performed to gain a better understanding of the effects of ozone treatment on emissions odorous compounds and to identify potential options for optimization of ozone treatment. The compounds monitored included volatile sulfur compounds, amine, carboxylic acids, ketones, phenols and indoles. Measurements were performed during nearly a one-month period in summertime. The compounds with the highest concentrations observed in the ventilation exhaust duct were acetic acid, hydrogen sulfide, propanoic acid and butanoic acid. The compounds with the highest removal efficiencies were hydrogen sulfide, 3-methyl-indole, phenol and acetic acid. Based on odor threshold values, methanethiol, butanoic acid, 4-methylphenol, hydrogen sulfide and C5 carboxylic acids are estimated to contribute significantly to the odor nuisance. Emissions of odorous compounds were observed to be strongly correlated with temperature with the exception of hydrogen sulfide. Emission peaks of sulfur compounds were seen during slurry handling activities. Discharging of the slurry pit led to reduced hydrogen sulfide emissions, but emissions of most other odorants were not affected. The results indicate that emissions of odorants other than hydrogen sulfide mainly originate from sources other than the treated slurry, which limits the potential for further optimization. The PTR-MS measurements are demonstrated to provide a quantitative, accurate and detailed evaluation of ozone treatment for emission reduction.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.