The world's leading PTR-MS company

Ultra-Sensitive Real-Time Trace Gas Analyzers  •  Modular TOF-MS for Research & OEM


You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!


Found 9 results
[ Title(Desc)] Year
Filters: Author is Kohl, Ingrid  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
[Titzmann2009] Titzmann, T., I. Kohl, and J. Beauchamp, "Analysis of inspiration/expiration air", , no. EP2042866, 2009.
[Singer2011] Singer, W., J. Herbig, R. Gutmann, K. Winkler, I. Kohl, and A. Hansel, "Applications of PTR-MS in medicine and biotechnology", American Laboratory, vol. 43, no. 7: AMER LABORATORY-LABCOMPARE 30 CONTROLS DRIVE, SHELTON, CT 06484 USA, pp. 34–37, 2011.
Proton transfer reaction-mass spectrometry (PTR-MS) is a well-established analytical tool for the measurement of volatile organic compounds (VOCs), and offers real-time detection and quantification of VOCs at trace concentrations. This paper focuses on the measurement of VOCs in biological systems. Both microorganisms and cells, e.g., in the human body, constantly produce a large variety of volatile organic metabolites. Analyzing VOCs in exhaled human breath reveals information about the status of the body. In a similar manner, monitoring the off-gas of fermentations in the biopharmaceutical industry allows microbial activity to be gauged. Undesired compounds (those that are harmful to the human body or impurities in biotechnical processes) can also be tracked in real time using the technique.
[Herbig2008] Herbig, J., T. Titzmann, J. Beauchamp, I. Kohl, and A. Hansel, "Buffered end-tidal (BET) sampling-a novel method for real-time breath-gas analysis.", J Breath Res, vol. 2, no. 3: Ionimed Analytik GmbH, Technikerstrasse 21a, A-6020 Innsbruck, Austria., pp. 037008, Sep, 2008.
We present a novel method for real-time breath-gas analysis using mass-spectrometric techniques: buffered end-tidal (BET) on-line sampling. BET has several advantages over conventional direct on-line sampling where the subject inhales and exhales through a sampling tube. In our approach, a single exhalation is administered through a tailored tube in which the end-tidal fraction of the breath-gas sample is buffered. This increases sampling time by an order of magnitude to several seconds, improving signal quality and reducing the total measurement time per test subject. Furthermore, only one exhalation per minute is required for sampling and the test subject can otherwise maintain a normal breathing pattern, thereby reducing the risk of hyperventilation. To validate our new BET sampling method we conducted comparative measurements with direct on-line sampling using proton-transfer-reaction mass spectrometry. We find excellent agreement in measured acetone and acetonitrile concentrations. High variability observed in breath-by-breath isoprene concentrations is attributed to differences in exhalation depth and influences of hyperventilation on end-tidal concentrations.
[Kohl2013b] Kohl, I., J. Beauchamp, F. Cakar-Beck, J. Herbig, J.. Dunkl, O. Tietje, M. Tiefenthaler, C. Boesmueller, A. Wisthaler, M. Breitenlechner, et al., "First observation of a potential non-invasive breath gas biomarker for kidney function.", J Breath Res, vol. 7, no. 1: Ionimed Analytik GmbH, Eduard Bodem Gasse 3, A-6020 Innsbruck, Austria., pp. 017110, Mar, 2013.
We report on the search for low molecular weight molecules-possibly accumulated in the bloodstream and body-in the exhaled breath of uremic patients with kidney malfunction. We performed non-invasive analysis of the breath gas of 96 patients shortly before and several times after kidney transplantation using proton-transfer-reaction mass spectrometry (PTR-MS), a very sensitive technique for detecting trace amounts of volatile organic compounds. A total of 642 individual breath analyses which included at least 41 different chemical components were carried out. Correlation analysis revealed one particular breath component with a molecular mass of 114 u (unified atomic mass units) that clearly correlated with blood serum creatinine, which is the currently accepted marker for assessing the function of the kidney. In particular, daily urine production showed good correlation with the identified breath marker. An independent set of seven samples taken from three patients at the onset of dialysis and three controls with normal kidney function confirmed a significant difference in concentration between patients and controls for a compound with a molecular mass of 114.1035 u using high mass resolving proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOF-MS). A chemical composition of CHO was derived for the respective component. Fragmentation experiments on the same samples using proton-transfer-reaction triple-quadrupole tandem mass spectrometry (PTR-QqQ-MS) suggested that this breath marker is a C-ketone or a branched C-aldehyde. Non-invasive real-time monitoring of the kidney function via this breath marker could be a possible future procedure in the clinical setting.
[Kohl2011] Kohl, I., J. Herbig, J. Beauchamp, J. Dunkl, O. Tietje, and A. Hansel, "Online breath analysis of volatile organic compounds with PTR-MS: a guanidino breath marker for the status of uremia and kidney transplant rejection diagnosis.", 4th International PTR-MS Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications, pp. 251, 2011.
[Herbig2009] Herbig, J., M. Seger, I. Kohl, G. Mayramhof, T. Titzmann, A. Preinfalk, K. Winkler, J. Dunkl, B. Pfeifer, C. Baumgartner, et al., "Online breath sampling with PTR-MS - A setup for large screening studies", 4th International PTR-MS Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications, pp. 46, 2009.
[Kohl2009] Kohl, I., J. Herbig, J. Beauchamp, J. Dunkl, O. Tietje, and A. Hansel, "Proton-transfer-reaction mass spectrometry online analysis of volatile organic compounds in the exhaled breath: kidney transplant rejection diagnosis", CONFERENCE SERIES, pp. 251, 2009.
[Winkler2013] Winkler, K., J. Herbig, and I. Kohl, "Real-time metabolic monitoring with proton transfer reaction mass spectrometry", Journal of breath research, vol. 7, no. 3: IOP Publishing, pp. 036006, 2013.
<p><span style="color: rgb(0, 0, 0); font-family: Arial, Helvetica, Verdana, sans-serif; font-size: 12px; line-height: 16.1875px; background-color: rgb(255, 255, 255);">We analysed the time evolution of several volatile organic compounds formed by the catabolism of ingested isotope-labelled ethanol using real-time breath gas analysis with proton-transfer-reaction mass spectrometry. Isotope labelling allowed distinguishing the emerging volatile metabolites from their naturally occurring, highly abundant counterparts in the human breath. Due to an extremely low detection limit of the employed technologies in the parts per trillion per volume range, it was possible to detect the emerging metabolic products in exhaled breath within ~10&nbsp;min after oral ingestion of isotope-labelled ethanol. We observed that ethanol was in part transformed into deuterated acetone and isoprene, reflecting the different fates of activated acetic acid (acetyl-coenzyme A), formed in ethanol metabolism. Using ethanol as a model clearly demonstrated the value of the here presented technique for the search for volatile markers for metabolic disorders in the exhaled breath and its potential usefulness in the diagnosis and monitoring of such diseases.</span></p>
[Kohl2009a] Kohl, I., J. Beauchamp, and T. Titzmann, "SAMPLING DEVICE FOR BUFFERED RESPIRATORY GAS ANALYSIS", , no. EP2064543, 2009.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:


Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.


Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics


Download the latest version of the IONICON publication database as BibTeX.