[Jordan2009b]
Jordan, A., S. Haidacher, G. Hanel, E. Hartungen, L. Maerk, H. Seehauser, R. Schottkowsky, P. Sulzer, and TD. Maerk,
"A high resolution and high sensitivity proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS)",
International Journal of Mass Spectrometry, vol. 286, no. 2: Elsevier, pp. 122–128, 2009.
Link:
http://www.sciencedirect.com/science/article/pii/S1387380609002371
Proton-transfer-reaction mass spectrometry (PTR-MS) developed about 10 years ago is used today in a wide range of scientific and technical fields allowing real-time on-line measurements of volatile organic compounds in air with a high sensitivity and a fast response time. Most instruments employed so far use quadrupole filters to analyze product ions generated in the reaction drift tube. Due to the low mass resolution of the quadrupoles used this has the disadvantage that identification of trace gases under study is not unambiguous. Here we report the development of a new version of PTR-MS instruments using a time-of-flight mass spectrometer, which is capable of measuring VOCs at ultra-low concentrations (as low as a few pptv) under high mass resolution (as high as 6000 m/Δm in the V-mode) with a mass range of beyond 100 000 amu. This instrument was constructed by interfacing the well characterized and recently improved Ionicon hollow cathode ion source and drift tube section with a Tofwerk orthogonal acceleration reflectron time-of-flight mass spectrometer. We will first discuss the set-up of this new PTR-TOF-MS mass spectrometer instrument, its performance (with a sensitivity of several tens of cps/ppbv) and finally give some examples concerning urban air measurements where sensitivity, detection limit and mass resolution is essential to obtain relevant data.
[Jordan2009c]
Jordan, A., S. Haidacher, G. Hanel, E. Hartungen, J. Herbig, L. Maerk, R. Schottkowsky, H. Seehauser, P. Sulzer, and TD. Maerk,
"An online ultra-high sensitivity Proton-transfer-reaction mass-spectrometer combined with switchable reagent ion capability (PTR+ SRI- MS)",
International Journal of Mass Spectrometry, vol. 286, no. 1: Elsevier, pp. 32–38, 2009.
Link:
http://www.sciencedirect.com/science/article/pii/S1387380609002036
Proton-transfer-reaction mass-spectrometry (PTR-MS) developed in the 1990s is used today in a wide range of scientific and technical fields. PTR-MS allows for real-time, online determination of absolute concentrations of volatile (organic) compounds (VOCs) in air with high sensitivity (into the low pptv range) and a fast response time (in the 40–100 ms time regime). Most PTR-MS instruments employed so far use an ion source consisting of a hollow cathode (HC) discharge in water vapour which provides an intense source of proton donor H3O+ ions. As the use of other ions, e.g. NO+ and O2+, can be useful for the identification of VOCs and for the detection of VOCs with proton affinities (PA) below that of H2O, selected ion flow tube mass spectrometry (SIFT-MS) with mass selected ions has been applied in these instances. SIFT-MS suffers, however, from at least two orders lower reagent ion counts rates and therefore SIFT-MS suffers from lower sensitivity than PTR-MS. Here we report the development of a PTR-MS instrument using a modified HC ion source and drift tube design, which allows for the easy and fast switching between H3O+, NO+ and O2+ ions produced in high purity and in large quantities in this source. This instrument is capable of measuring low concentrations (with detection limits approaching the ppqv regime) of VOCs using any of the three reagent ions investigated in this study. Therefore this instrument combines the advantages of the PTR-MS technology (the superior sensitivity) with those of SIFT-MS (detection of VOCs with PAs smaller than that of the water molecule and the capability to distinguish between isomeric compounds). We will first discuss the setup of this new PTR+SRI-MS mass spectrometer instrument, its performance for aromates, aldehydes and ketones (with a sensitivity of up to nearly 1000 cps/ppbv and a detection limit of about several 100 ppqv) and finally give some examples concerning the ability to distinguish structural isomeric compounds.