[Lindinger2005]
Lindinger, C., P. Pollien, S. Ali, C. Yeretzian, I. Blank, and T. Maerk,
"Unambiguous identification of volatile organic compounds by proton-transfer reaction mass spectrometry coupled with GC/MS.",
Anal Chem, vol. 77, no. 13: Nestlé Research Center, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland., pp. 4117–4124, Jul, 2005.
Link:
http://pubs.acs.org/doi/abs/10.1021/ac0501240
Interest in on-line measurements of volatile organic compounds (VOCs) is increasing, as sensitive, compact, and affordable direct inlet mass spectrometers are becoming available. Proton-transfer reaction mass spectrometry (PTR-MS) distinguishes itself by its high sensitivity (low ppt range), high time resolution (200 ms), little ionization-induced fragmentation, and ionization efficiency independent of the compound to be analyzed. Yet, PTR-MS has a shortcoming. It is a one-dimensional technique that characterizes compounds only via their mass, which is not sufficient for positive identification. Here, we introduce a technical and analytical extension of PTR-MS, which removes this shortcoming, while preserving its salient and unique features. Combining separation of VOCs by gas chromatography (GC) with simultaneous and parallel detection of the GC effluent by PTR-MS and electron impact MS, an unambiguous interpretation of complex PTR-MS spectra becomes feasible. This novel development is discussed on the basis of characteristic performance parameters, such as resolution, linear range, and detection limit. The recently developed drift tube with a reduced reaction volume is crucial to exploit the full potential of the setup. We illustrate the performance of the novel setup by analyzing a complex food system.