The world's leading PTR-MS company

Ultra-Sensitive Real-Time Trace Gas Analyzers  •  Modular TOF-MS for Research & OEM


You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!


Found 2 results
Title [ Year(Desc)]
Filters: Author is Parrish, D  [Clear All Filters]
[Stroud2001] Stroud, CA., JM. Roberts, PD. Goldan, WC. Kuster, PC. Murphy, EJ. Williams, D. Hereid, D. Parrish, D. Sueper, M. Trainer, et al., "Isoprene and its oxidation products, methacrolein and methylvinyl ketone, at an urban forested site during the 1999 Southern Oxidants Study", Journal of Geophysical Research: Atmospheres (1984–2012), vol. 106, no. D8: Wiley Online Library, pp. 8035–8046, 2001.
[Cooper2004] Cooper, OR., C. Forster, D. Parrish, M. Trainer, E. Dunlea, T. Ryerson, G. Huebler, F. Fehsenfeld, D. Nicks, J. Holloway, et al., "A case study of transpacific warm conveyor belt transport: Influence of merging airstreams on trace gas import to North America", Journal of geophysical research, vol. 109, no. D23: American Geophysical Union, pp. D23S08, 2004.
The warm conveyor belt (WCB), the major cloud-forming airstream of midlatitude cyclones, is the primary mechanism for rapidly transporting air pollution from one continent to another. However, relatively little has been written on WCB transport across the North Pacific Ocean. To address this important intercontinental transport route, this study describes the life cycle of a WCB associated with the export of a highly polluted air mass from Asia to North America. This event was sampled using in situ measurements from an aircraft platform flying above the North American West Coast during the 2002 Intercontinental Transport and Chemical Transformation (ITCT 2K2) experiment on 5 May. Satellite imagery, trajectory ensembles, in situ measurements, and animations are used to illustrate the formation of the WCB near eastern Asia, its entrainment of polluted air masses, its transport path across the Pacific, and its decay above the eastern North Pacific Ocean and western North America. A major finding is that a WCB can entrain air from a variety of source regions and not just the atmospheric boundary layer. We estimate that 8% of the WCB's mass originated in the stratosphere and 44% passed through the lower troposphere, of which two thirds passed through the lower troposphere above the populated regions of eastern Asia. The remaining 48% traveled entirely within the middle and upper troposphere over the previous 5.5 days. Interestingly, an estimated 18% of the WCB's mass was entrained from an upwind and decaying WCB via a newly discovered but apparently common transport mechanism. Only 9% of the WCB's mass subsequently passed through the lower troposphere of the United States, with the remainder passing over North America in the middle and upper troposphere.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:


Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.


Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics


Download the latest version of the IONICON publication database as BibTeX.