[Christian2003]
Christian, TJ., B. Kleiss, RJ. Yokelson, R. Holzinger, PJ. Crutzen, WM. Hao, BH. Saharjo, and DE. Ward,
"Comprehensive laboratory measurements of biomass-burning emissions: 1. Emissions from Indonesian, African, and other fuels",
J. Geophys. Res, vol. 108, no. 4719, pp. 1–4719, 2003.
Link:
http://www.agu.org/pubs/crossref/2003/2003JD003704.shtml
Trace gas and particle emissions were measured from 47 laboratory fires burning 16 regionally to globally significant fuel types. Instrumentation included the following: open-path Fourier transform infrared spectroscopy; proton transfer reaction mass spectrometry; filter sampling with subsequent analysis of particles with diameter <2.5 μm for organic and elemental carbon and other elements; and canister sampling with subsequent analysis by gas chromatography (GC)/flame ionization detector, GC/electron capture detector, and GC/mass spectrometry. The emissions of 26 compounds are reported by fuel type. The results include the first detailed measurements of the emissions from Indonesian fuels. Carbon dioxide, CO, CH4, NH3, HCN, methanol, and acetic acid were the seven most abundant emissions (in order) from burning Indonesian peat. Acetol (hydroxyacetone) was a major, previously unobserved emission from burning rice straw (21–34 g/kg). The emission factors for our simulated African fires are consistent with field data for African fires for compounds measured in both the laboratory and the field. However, the higher concentrations and more extensive instrumentation in this work allowed quantification of at least 10 species not previously quantified for African field fires (in order of abundance): acetaldehyde, phenol, acetol, glycolaldehyde, methylvinylether, furan, acetone, acetonitrile, propenenitrile, and propanenitrile. Most of these new compounds are oxygenated organic compounds, which further reinforces the importance of these reactive compounds as initial emissions from global biomass burning. A few high-combustion-efficiency fires emitted very high levels of elemental (black) carbon, suggesting that biomass burning may produce more elemental carbon than previously estimated.
[Salisbury2003]
Salisbury, G., J. Williams, R. Holzinger, V. Gros, N. Mihalopoulos, M. Vrekoussis, R. Sarda-Esteve, H. Berresheim, R. von Kuhlmann, M. Lawrence, et al.,
"Ground-based PTR-MS measurements of reactive organic compounds during the MINOS campaign in Crete, July–August 2001",
Atmospheric Chemistry and Physics, vol. 3, no. 4: Copernicus GmbH, pp. 925–940, 2003.
Link:
http://www.atmos-chem-phys.net/3/925/2003/acp-3-925-2003.pdf
This study presents measurements of acetonitrile, benzene, toluene, methanol and acetone made using the proton-transfer-reaction mass spectrometry (PTR-MS) technique at the Finokalia ground station in Crete during the Mediterranean INtensive Oxidant Study (MINOS) in July-August 2001. Three periods during the campaign with broadly consistent back trajectories are examined in detail. In the first, air was advected from Eastern Europe without significant biomass burning influence (mean acetonitrile mixing ratio 154 pmol/mol). In the second period, the sampled air masses originated in Western Europe, and were advected approximately east-south-east, before turning south-west over the Black Sea and north-western Turkey. The third well-defined period included air masses advected from Eastern Europe passing east and south of/over the Sea of Azov, and showed significant influence by biomass burning (mean acetonitrile mixing ratio 436 pmol/mol), confirmed by satellite pictures. The mean toluene:benzene ratios observed in the three campaign periods described were 0.35, 0.37 and 0.22, respectively; the use of this quantity to determine air mass age is discussed. Methanol and acetone were generally well-correlated both with each other and with carbon monoxide throughout the campaign. Comparison of the acetone and methanol measurements with the MATCH-MPIC model showed that the model underestimated both species by a factor of 4, on average. The correlations between acetone, methanol and CO implied that the relatively high levels of methanol observed during MINOS were largely due to direct biogenic emissions, and also that biogenic sources of acetone were highly significant during MINOS ( 35%). This in turn suggests that the model deficit in both species may be due, at least in part, to missing biogenic emissions.