The world's leading PTR-MS company

Ultra-Sensitive Real-Time Trace Gas Analyzers  •  Modular TOF-MS for Research & OEM


You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!


Found 3 results
Title [ Year(Asc)]
Filters: Author is Marini, Federico  [Clear All Filters]
[Aprea2007a] Aprea, E., F. Biasioli, F. Gasperi, D. Mott, F. Marini, and T. D. Maerk, "Assessment of Trentingrana cheese ageing by proton transfer reaction-mass spectrometry and chemometrics", International dairy journal, vol. 17, no. 3: Elsevier, pp. 226–234, 2007.
Proton transfer reaction-mass spectrometry (PTR-MS) data have been analysed by chemometric techniques to monitor cheese ageing by means of on-line direct head-space gas analysis. Twenty cheese loaves of Trentingrana, a trademarked cheese produced in northern Italy, of different origin and ripening degree, were sampled over the whole Trentingrana production area. An increase of the spectral intensity with ripening has been observed for most of the PTR-MS peaks and a univariate analysis identified 16 mass peaks that were significantly different for ripened and young cheeses, respectively. Moreover, the usefulness of different discriminant analyses and class modelling techniques have been investigated. Discriminant Partial Least Squares analysis, while indicating average behaviour and possible outliers, was not able to correctly classify all samples. Soft class modelling performed better and allowed a 100% correct classification. Partial least square calibration predicted the ageing time of each loaf with reasonable accuracy with a maximum cross-validation error of 3.5 months.
[Biasioli2006] Biasioli, F., F. Gasperi, E. Aprea, I. Endrizzi, V. Framondino, F. Marini, D. Mott, and T. D. Maerk, "Correlation of PTR-MS spectral fingerprints with sensory characterisation of flavour and odour profile of "Trentingrana" cheese", Food quality and preference, vol. 17, no. 1: Elsevier, pp. 63–75, 2006.
Proton transfer reaction-mass spectrometry (PTR-MS) is a relatively new technique that allows the fast and accurate detection of volatile organic compounds. The paper discusses the possibility of correlating the PTR-MS spectral fingerprint of the mixture of volatile compounds present in the head-space of 20 samples of “Trentingrana”, the variety of Grana Padano produced in Trentino (Northern Italy), with the sensory evaluation (Quantitative Descriptive Analysis) of the same samples obtained by a panel of trained judges. Only attributes related to odours (six attributes) and flavours (six attributes) are considered. Results of descriptive statistics are shown and the performances of different multivariate calibration methods (Partial Least Squares, both PLS1 and PLS2) are compared by evaluating the errors in the cross-validated estimation of the sensory attributes. PLS2 seems to give a good average description providing an overall insight of the problem but does not provide an accurate prediction of the individual sensory attributes. PLS1 analysis is more accurate and performs well in most cases but it uses several latent variables, so that the interpretation of the loadings is not straightforward. The preliminary application of Orthogonal Signal Correction filtering on PTR-MS spectra followed by PLS1 analysis results in a good estimation for most of the attributes and has the advantage to use only one or two latent variables. Comparison with other works and a tentative indication of the compounds correlated with sensory description are reported.
[Biasioli2004] Biasioli, F., F. Gasperi, G. Odorizzi, E. Aprea, D. Mott, F. Marini, G. Autiero, G. Rotondo, and T. D. Märk, "PTR-MS monitoring of odour emissions from composting plants", International journal of mass spectrometry, vol. 239, no. 2: Elsevier, pp. 103–109, 2004.
We studied the possibility of monitoring with proton transfer reaction-mass spectrometry (PTR-MS) odours emitted in various situations related to composting plants of municipal solid waste (MSW), i.e., waste storage, waste management, and biofilters. Comparison of PTR-MS volatile profiles of the gaseous mixtures entering and exiting a biofilter suggests the possibility of fast and reliable monitoring biofilter efficiency. Moreover, we investigated the relationships between the olfactometric assessment of odour concentration and PTR-MS spectral line intensity finding a positive correlation between the former and several masses and their overall intensity. The application of multivariate calibration methods allows to determine odour concentrations based only on PTR-MS instrumental data. The possibility of avoiding the use of time consuming and expensive olfactometric methods and applications in monitoring waste treatments plants and, in particular, of biofilters is suggested.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:


Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.


Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics


Download the latest version of the IONICON publication database as BibTeX.