[Gasperi2009]
Gasperi, F., E. Aprea, F. Biasioli, S. Carlin, I. Endrizzi, G. Pirretti, and S. Spilimbergo,
"Effects of supercritical CO< sub> 2 and N< sub> 2 O pasteurisation on the quality of fresh apple juice",
Food chemistry, vol. 115, no. 1: Elsevier, pp. 129–136, 2009.
Link:
http://www.sciencedirect.com/science/article/pii/S0308814608014234
Supercritical pasteurisation is receiving increasing attention as an alternative technology for foodstuff pasteurisation, but often the possible effects on the perceptible quality are not sufficiently considered. To address this latter issue, besides standard microbial analysis, we here investigate the impact of CO2/N2O supercritical pasteurisation (100 bar, 36 °C and 10 min treatment time) on the quality traits of fresh apple juice, linked to consumer perception. Discriminative sensory analysis (triangle test) and basic chemical characterization (total solids, sugars, organic acids, polyphenols) could not clearly demonstrate any induced modification of the treated juice, while head space analysis of volatile compounds (both by GC–MS and PTR–MS) indicated a general depletion of the volatile compounds that must be considered in the development of a stabilization method based on supercritical gases.
[Aprea2009a]
Aprea, E., F. Biasioli, S. Carlin, I. Endrizzi, and F. Gasperi,
"Investigation of volatile compounds in two raspberry cultivars by two headspace techniques: solid-phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) and proton-transfer reaction-mass spectrometry (PTR-MS).",
J Agric Food Chem, vol. 57, no. 10: IASMA Research and Innovation Centre, Fondazione Edmund Mach, Food Quality and Nutrition Area, Via E Mach 1, S Michele all'Adige, TN 38010, Italy. eugenio.aprea@iasma.it, pp. 4011–4018, May, 2009.
Link:
http://pubs.acs.org/doi/abs/10.1021/jf803998c
The volatile compounds emitted by two raspberry varieties ( Rubus idaeus , cv. Polka and Tulameen) were analyzed, in both the case of fresh fruits and juices, by two headspace methods that are rapid, solvent-free, and with reduced or no sample pretreatment: solid-phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) and proton-transfer reaction-mass spectrometry (PTR-MS). Multivariate analysis of the SPME/GC-MS results allows for an unambiguous sample discrimination for both mashed fruits and juices. PTR-MS instrumental fingerprint provides, in a faster way, similar qualitative information on the overall flavor profile. The two cultivars show both qualitative and quantitative differences. SPME/GC-MS analysis shows that alcohols and aldehydes are more abundant in the headspace of Tulameen as, e.g., hexanal and hexanol that induce herbaceous odor notes. This observation has been confirmed by sensory analysis. PTR-MS was also used to monitor rapid processes that modify the original aromatic profile, such as lipo-oxigenase activity induced by tissue damages occurring during industrial transformation, accidental mechanical damages, or as a consequence of chewing.