The world's leading PTR-MS company

Ultra-Sensitive Real-Time Trace Gas Analyzers  •  Modular TOF-MS for Research & OEM

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 1 results
Title [ Year(Asc)]
Filters: Author is Claus J. Nielsen  [Clear All Filters]
2018
[1863] Tan, W., L. Zhu, T. Mikoviny, C. J. Nielsen, A. Wisthaler, P. Eichler, M. Müller, B. D'Anna, N. J. Farren, J. F. Hamilton, et al., "Theoretical and Experimental Study on the Reaction of tert-Butylamine with {OH} Radicals in the Atmosphere", The Journal of Physical Chemistry A, vol. 122, pp. 4470–4480, apr, 2018.
Link: https://www.atmos-meas-tech.net/11/1481/2018/amt-11-1481-2018.html
Abstract
<p>The OH-initiated atmospheric degradation of tert-butylamine (tBA), (CH3)3CNH2, was investigated in a detailed quantum chemistry study and in laboratory experiments at the European Photoreactor (EUPHORE) in Spain. The reaction was found to mainly proceed via hydrogen abstraction from the amino group, which in the presence of nitrogen oxides (NOx), generates tert-butylnitramine, (CH3)3CNHNO2, and acetone as the main reaction products. Acetone is formed via the reaction of tert-butylnitrosamine, (CH3)3CNHNO, and/or its isomer tert-butylhydroxydiazene, (CH3)3CN═NOH, with OH radicals, which yield nitrous oxide (N2O) and the (CH3)3Ċ radical. The latter is converted to acetone and formaldehyde. Minor predicted and observed reaction products include formaldehyde, 2-methylpropene, acetamide and propan-2-imine. The reaction in the EUPHORE chamber was accompanied by strong particle formation which was induced by an acid&ndash;base reaction between photochemically formed nitric acid and the reagent amine. The tert-butylaminium nitrate salt was found to be of low volatility, with a vapor pressure of 5.1 &times; 10&ndash;6 Pa at 298 K. The rate of reaction between tert-butylamine and OH radicals was measured to be 8.4 (&plusmn;1.7) &times; 10&ndash;12 cm3 molecule&ndash;1 s&ndash;1 at 305 &plusmn; 2 K and 1015 &plusmn; 1 hPa.</p>

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.