The world's leading PTR-MS company

Ultra-Sensitive Real-Time Trace Gas Analyzers  •  Modular TOF-MS for Research & OEM


You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!


Found 2 results
Title [ Year(Asc)]
Filters: Author is Boy, M  [Clear All Filters]
[Williams2011] Williams, J., J. Crowley, H. Fischer, H. Harder, M. Martinez, T. Petäjä, J. Rinne, J. Bäck, M. Boy, M. Dal Maso, et al., "The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010): an overview of meteorological and chemical influences", Atmospheric Chemistry and Physics Discussions, vol. 11, no. 5: Copernicus GmbH, pp. 15921–15973, 2011.
This paper describes the background, instrumentation, goals, and the regional influences on the HUMPPA-COPEC intensive field measurement campaign, conducted at the Boreal forest research station SMEAR II (Station for Measuring Ecosystem-Atmosphere Relation) in Hyytiälä, Finland from 12 July–12 August 2010. The prevailing meteorological conditions during the campaign are examined and contrasted with those of the past six years. Back trajectory analyses show that meteorological conditions at the site were characterized by a higher proportion of southerly flow. As a result the summer of 2010 was anomalously warm and high in ozone making the campaign relevant for the analysis of possible future climates. A comprehensive land use analysis, provided on both 5 and 50 km scales, shows that the main vegetation types surrounding the site on both the regional and local scales are: coniferous forest (Scots pine and/or Norway spruce); mixed forest (Birch and conifers); and woodland scrub (e.g. Willows, Aspen); indicating that the campaign results can be taken as representative of the Boreal forest ecosystem. In addition to the influence of biogenic emissions, the measurement site was occasionally impacted by sources other than vegetation. Specific tracers have been used here to identify the time periods when such sources have impacted the site namely: biomass burning (acetonitrile and CO), urban anthropogenic pollution (pentane and SO2) and the nearby Korkeakoski sawmill (enantiomeric ratio of chiral monoterpenes). None of these sources dominated the study period, allowing the Boreal forest summertime emissions to be assessed and contrasted with various other source signatures.
[Sinha2010] Sinha, V., J. Williams, J. Lelieveld, TM. Ruuskanen, MK. Kajos, J. Patokoski, H. Hellen, H. Hakola, D. Mogensen, M. Boy, et al., "OH reactivity measurements within a boreal forest: evidence for unknown reactive emissions", Environmental science & technology, vol. 44, no. 17: ACS Publications, pp. 6614–6620, 2010.
Boreal forests emit large amounts of volatile organic compounds (VOCs) which react with the hydroxyl radical (OH) to influence regional ozone levels and form secondary organic aerosol. Using OH reactivity measurements within a boreal forest in Finland, we investigated the budget of reactive VOCs. OH reactivity was measured using the comparative reactivity method, whereas 30 individual VOCs were measured using proton transfer reaction mass spectrometry, thermal-desorption gas chromatography mass spectrometry, and liquid chromatography mass spectrometry, in August 2008. The measured OH reactivity ranged from below detection limit (3.5 s−1), to 60 s−1 in a single pollution event. The average OH reactivity was 9 s−1 and no diel variation was observed in the profiles. The measured OH sinks (30 species) accounted for only 50% of the total measured OH reactivity, implying unknown reactive VOCs within the forest. The five highest measured OH sinks were: monoterpenes (1 s−1), CO (0.7 s−1), isoprene (0.5 s−1), propanal and acetone (0.3 s−1), and methane (0.3 s−1). We suggest that models be constrained by direct OH reactivity measurements to accurately assess the impact of boreal forest emissions on regional atmospheric chemistry and climate.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:


Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.


Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics


Download the latest version of the IONICON publication database as BibTeX.