The world's leading PTR-MS company

Ultra-Sensitive Real-Time Trace Gas Analyzers  •  Modular TOF-MS for Research & OEM

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 1 results
Title [ Year(Desc)]
Filters: Author is Norman, Michael  [Clear All Filters]
2007
[Norman2007] Norman, M., A. Hansel, and A. Wisthaler, "O2+ as reagent ion in the PTR-MS instrument: Detection of gas-phase ammonia", International Journal of Mass Spectrometry, vol. 265, no. 2: Elsevier, pp. 382–387, 2007.
Link: http://www.sciencedirect.com/science/article/pii/S1387380607002515
Abstract
Oxygen was used as a source gas in a conventional Innsbruck PTR-MS instrument to produce O2+ ions as chemical ionization (CI) reagents instead of H3O+ ions. The use of O2+ ions as CI reagents allows for fast, highly sensitive and specific measurements of gas-phase ammonia (NH3) via the electron transfer reaction O2+ + NH3 → NH3+ + O2. The instrument was tested to be linear in the 2–2000 ppbv range. Instrument sensitivity was observed to be humidity-independent and amounted to ∼40 cps/ppbv. The instrumental background was determined by sampling NH3-free air from a heated platinum/palladium catalyst. A humidity-dependent increase of the instrumental background from 70 pptv at dry conditions to 470 pptv at humid conditions was observed. The corresponding 2σ-detection limits at 1 s signal integration time were 90 pptv for dry conditions and 230 pptv for humid conditions, respectively. The observed background may be intrinsically formed in the instrument's ion source but it may also be the result of incomplete NH3 oxidation in the catalyst used for zeroing. The reported background levels and detection limits are thus to be considered as upper limits. The 1/e response time of the instrument was in the range of 3–5 s. The PTR-MS instrument was successfully deployed in the field to monitor changes in gas-phase NH3 concentrations in the few seconds to tens of seconds time range. Laboratory intercomparison measurements between the PTR-MS instrument and a commercial NH3 analyzer (AiRRmonia) were in good agreement. The use of O2+ ions as CI reagents will significantly improve the analytical capabilities of the Innsbruck PTR-MS instrument.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.