The world's leading PTR-MS company

Ultra-Sensitive Real-Time Trace Gas Analyzers  •  Modular TOF-MS for Research & OEM


You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!


Found 2 results
Title [ Year(Asc)]
Filters: Author is Laffineur, Quentin  [Clear All Filters]
[Laffineur2011a] Laffineur, Q., M. Aubinet, N. Schoon, C. Amelynck, J-F. Müller, J. Dewulf, H. Van Langenhove, K. Steppe, M. Šimpraga, and B. Heinesch, "Isoprene and monoterpene emissions from a mixed temperate forest", Atmospheric Environment, vol. 45, no. 18: Elsevier, pp. 3157–3168, 2011.
<p>We measured the isoprene and monoterpene fluxes continuously above a mixed forest site at Vielsalm in the eastern part of Belgium, using the disjunct eddy covariance technique with proton transfer reaction-mass spectrometry. Simultaneously, we also measured the carbon dioxide fluxes in order to deduce the gross primary production. The measurements were conducted from July to September 2009. During the day, the seasonal evolution of the isoprene/monoterpene emissions was studied using a monthly temperature and light dependence function deduced from our results to standardize the fluxes. A seasonal decrease in the standard emission factors was observed, probably linked to acclimation or senescence. The standard emission factor for isoprene fluxes (30 &deg;C, 1000 μmol m&minus;2 s&minus;1) fell from 0.91 &plusmn; 0.01 to 0.56 &plusmn; 0.02 μg m&minus;2 s&minus;1 and for monoterpene fluxes from 0.74 &plusmn; 0.03 to 0.27 &plusmn; 0.03 μg m&minus;2 s&minus;1. During the night, a slight positive flux of monoterpenes was observed that seemed to be driven by air temperature. The standard emission factor (30&deg;C) for nighttime monoterpene fluxes was equal to 0.093 &plusmn; 0.019 μg m&minus;2 s&minus;1. Finally, we studied the seasonal evolution of the relationship between the gross primary production and the isoprene/monoterpenes fluxes. A linear relationship was observed, highlighting the strong link between carbon assimilation and isoprene/monoterpene emissions.</p>
[Laffineur2011] Laffineur, Q., B. Heinesch, N. Schoon, C. Amelynck, J-F. Müller, J. Dewulf, H. Van Langenhove, E. Joó, K. Steppe, and M. Aubinet, "What can we learn from year-round BVOC disjunct eddycovariance measurements? A case example from a temperate forest", 5th International PTR-MS Conference on Proton Transfer Reaction Mass Spectrometry and its Applications: Innsbruck university press, 2011.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:


Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.


Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics


Download the latest version of the IONICON publication database as BibTeX.