The world's leading PTR-MS company

Ultra-Sensitive Real-Time Trace Gas Analyzers  •  Modular TOF-MS for Research & OEM


You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!


Found 1 results
Title [ Year(Asc)]
Filters: Author is JL Ting, Valentina  [Clear All Filters]
[JLTing2012] Ting, V. J. L., C. Soukoulis, P. Silcock, L. Cappellin, A. Romano, E. Aprea, P. J. Bremer, T. D. Märk, F. Gasperi, and F. Biasioli, "In Vitro and In Vivo Flavor Release from Intact and Fresh-Cut Apple in Relation with Genetic, Textural, and Physicochemical Parameters", Journal of food science, vol. 77, no. 11: Wiley Online Library, pp. C1226–C1233, 2012.
Flavor release from 6 commercial apple cultivars (Fuji, Granny Smith, Golden Delicious, Jonagold, Morgen Dallago, and Red Delicious) under static conditions (intact or fresh-cut samples) and during consumption of fresh-cut samples (nosespace) was determined by proton transfer reaction mass spectrometry. Textural (firmness, fracturability, flesh elasticity, and rupture) and physicochemical (pH, acidity, and water content) properties of the apples were also measured. Static headspace analysis of intact fruits revealed Fuji and Granny Smith apples had the lowest concentration for all measured flavor compounds (esters, aldehydes, alcohols, and terpenes), whereas Red Delicious apples had the highest. Fresh-cut samples generally showed a significant increase in total volatile compounds with acetaldehyde being most abundant. However, compared to intact fruits, cut Golden and Red Delicious apples had a lower intensity for ester related peaks. Five parameters were extracted from the nosespace data of peaks related to esters (m/z 43, 61), acetaldehyde (m/z 45), and ethanol (m/z 47): 2 associated with mastication (duration of mastication–tcon; time required for first swallowing event–tswal), and 3 related with in-nose volatile compound concentration (area under the curve–AUC; maximum intensity–Imax; time for achieving Imax–tmax). Three different behaviors were identified in the nosespace data: a) firm samples with low AUC and tswal values (Granny Smith, Fuji), b) mealy samples with high AUC, Imax, tswal values, and low tcon (Morgen Dallago, Golden Delicious), and c) firm samples with high AUC and Imax values (Red Delicious). Strengths and limitations of the methodology are discussed.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:


Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.


Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics


Download the latest version of the IONICON publication database as BibTeX.