The world's leading PTR-MS company

Ultra-Sensitive Real-Time Trace Gas Analyzers  •  Modular TOF-MS for Research & OEM


You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!


Found 1 results
Title [ Year(Asc)]
Filters: Author is Neuner, C  [Clear All Filters]
[Beauchamp2004] Beauchamp, J., A. Wisthaler, W. Grabmer, C. Neuner, A. Weber, and A. Hansel, "Short-term measurements of CO, NO, NO< sub> 2, organic compounds and PM< sub> 10 at a motorway location in an Austrian valley", Atmospheric environment, vol. 38, no. 16: Elsevier, pp. 2511–2522, 2004.
In situ measurements of CO, NOx, PM10 and certain organic compounds took place over an 11 day period encompassing a 12 h motorway blockade. Located within the Inn valley (Tirol, Austria), the monitoring site experiences varying meteorological conditions and traffic frequency throughout the day which both strongly influence air pollutant levels. Early morning increases of NOx, PM10 and aromatic hydrocarbons were clearly correlated with rising traffic. Midday minima and afternoon maxima may be explained by changing wind conditions and varying inversion layer dynamics. Night time lows in concentrations can be explained by minimal traffic activity. Classification of compound sources was made through grouping of data, separated into times when heavy duty vehicles (HDV) were permitted to use the motorway and HDV-ban periods. Increased levels of NOx and PM10 were observed from data that included periods of high HDV numbers, with levels decreasing significantly during HDV-ban periods. In contrast, the aromatic hydrocarbons and CO displayed only minor variations between these two periods. Furthermore, on typical workdays NOx levels reached a maximum that corresponded to a peak in HDV numbers, whereas the aromatic compounds peaked later when LDV numbers had reached their maximum. Our findings give strong evidence that increased NOx and PM10 levels can be predominantly attributed to HDV traffic. Principal components analyses for the separated data further support this conclusion.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:


Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.


Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics


Download the latest version of the IONICON publication database as BibTeX.