The world's leading PTR-MS company

Ultra-Sensitive Real-Time Trace Gas Analyzers  •  Modular TOF-MS for Research & OEM


You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!


Found 1 results
Title [ Year(Asc)]
Filters: Author is Komenda, M  [Clear All Filters]
[Ammann2004] Ammann, C., C. Spirig, A. Neftel, M. Steinbacher, M. Komenda, and A. Schaub, "Application of PTR-MS for measurements of biogenic VOC in a deciduous forest", International Journal of Mass Spectrometry, vol. 239, no. 2: Elsevier, pp. 87–101, 2004.
The vegetation–atmosphere-exchange is an important process controlling the atmospheric concentration of various volatile organic compounds (VOCs) that play a major role in atmospheric chemistry. However, the quantification of VOC exchange on the ecosystem scale is still an analytical challenge. In the present study we tested and applied a proton-transfer-reaction mass spectrometry system (PTR-MS) for the measurement of biogenic VOCs in a mixed deciduous forest. VOC concentrations were calculated from the raw instrument signals based on physical principles. This method allows a consistent quantification also of compounds for which regular calibration with a gas standard is not available. It requires a regular and careful investigation of the mass-dependent ion detection characteristics of the PTR-MS, which otherwise could become a considerable error source. The PTR-MS method was tested in the laboratory for a range of oxygenated and non-oxygenated VOCs using a permeation source. The agreement was within 16% or better, which is well within the expected uncertainty. During the field measurement campaign in a deciduous forest stand, an on-line intercomparison with a state-of-the-art gas-chromatography system showed a generally good agreement. However, the relatively low ambient VOC concentrations revealed some systematic difference for acetone and isoprene, that may indicate an error in the determination of the PTR-MS offset or an interference of an unidentified isobaric compound on the detected ion mass. With the presentation of selected field results, we demonstrate the ability of the PTR-MS system to measure continuous vertical concentration profiles of biogenic VOCs throughout a forest canopy at a time resolution of 20 min. The resulting datasets provide valuable information for the study of the interactions between emission, photochemical transformation and transport processes within and above the forest canopy.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:


Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.


Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics


Download the latest version of the IONICON publication database as BibTeX.