[Sulzer2012c]
Sulzer, P., A. Edtbauer, E. Hartungen, S. Juerschik, A. Jordan, G. Hanel, S. Feil, S. Jaksch, L. Märk, and T. D. Märk,
"From conventional proton-transfer-reaction mass spectrometry (PTR-MS) to universal trace gas analysis",
International Journal of Mass Spectrometry, vol. 321: Elsevier, pp. 66–70, 2012.
Link:
http://www.sciencedirect.com/science/article/pii/S1387380612001704
We present here a slightly modified PTR-MS instrument that is not only capable to ionize trace compounds in air via proton-transfer-reactions (PTR) but is also able to ionize via charge-transfer-reactions (CTR) with help of reagent ions (Kr+ in particular) possessing higher ionization energies than common air constituents. This means that with minor adaptations a common PTR-MS instrument can be used for the analysis of nearly all available substance classes by using both PTR and/or CTR ionization. Especially in environmental research, the field of application where PTR-MS is used most widely, now not only trace volatile organic compounds (benzene, toluene, etc.) but additionally also very important (inorganic) substances, such as CO, CO2, CH4, NOx, and SO2, can be detected and quantified with the same instrument. As all ionizing agents are produced in a hollow cathode discharge ion source with good purity no additional mass filter is needed for reagent ion selection (as in other analytical methods employed) and remaining reagent ion impurities can be clearly distinguished from isobaric sample compounds due to the high mass resolution of the time-of-flight mass spectrometer used in the present PTR-MS instrument (PTR-TOF 8000). We present data obtained with various gas standards ranging from a “classical” PTR-MS aromatics mixture to samples containing molecules possessing ionization energies all the way up to 14 eV (CO).
[JLTing2012]
Ting, V. J. L., C. Soukoulis, P. Silcock, L. Cappellin, A. Romano, E. Aprea, P. J. Bremer, T. D. Märk, F. Gasperi, and F. Biasioli,
"In Vitro and In Vivo Flavor Release from Intact and Fresh-Cut Apple in Relation with Genetic, Textural, and Physicochemical Parameters",
Journal of food science, vol. 77, no. 11: Wiley Online Library, pp. C1226–C1233, 2012.
Link:
http://onlinelibrary.wiley.com/doi/10.1111/j.1750-3841.2012.02947.x/full
Flavor release from 6 commercial apple cultivars (Fuji, Granny Smith, Golden Delicious, Jonagold, Morgen Dallago, and Red Delicious) under static conditions (intact or fresh-cut samples) and during consumption of fresh-cut samples (nosespace) was determined by proton transfer reaction mass spectrometry. Textural (firmness, fracturability, flesh elasticity, and rupture) and physicochemical (pH, acidity, and water content) properties of the apples were also measured. Static headspace analysis of intact fruits revealed Fuji and Granny Smith apples had the lowest concentration for all measured flavor compounds (esters, aldehydes, alcohols, and terpenes), whereas Red Delicious apples had the highest. Fresh-cut samples generally showed a significant increase in total volatile compounds with acetaldehyde being most abundant. However, compared to intact fruits, cut Golden and Red Delicious apples had a lower intensity for ester related peaks. Five parameters were extracted from the nosespace data of peaks related to esters (m/z 43, 61), acetaldehyde (m/z 45), and ethanol (m/z 47): 2 associated with mastication (duration of mastication–tcon; time required for first swallowing event–tswal), and 3 related with in-nose volatile compound concentration (area under the curve–AUC; maximum intensity–Imax; time for achieving Imax–tmax). Three different behaviors were identified in the nosespace data: a) firm samples with low AUC and tswal values (Granny Smith, Fuji), b) mealy samples with high AUC, Imax, tswal values, and low tcon (Morgen Dallago, Golden Delicious), and c) firm samples with high AUC and Imax values (Red Delicious). Strengths and limitations of the methodology are discussed.
[Maerk2012]
Märk, L., A. Jordan, C. Lindinger, E. Hartungen, A. Edtbauer, S. Juerschik, P. Sulzer, and T. D. Märk,
"More than one order of magnitude higher sensitivities with Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry",
: IONICON Analytik, 2012.
Link:
http://www.ionicon.com/sites/default/files/uploads/doc/poster_ionicon_asms_ptr_tofms_series_performance_improvements.pdf[Soukoulis2012]
Soukoulis, C., F. Biasioli, E. Aprea, E. Schuhfried, L. Cappellin, T. D. Märk, and F. Gasperi,
"PTR-TOF-MS Analysis for Influence of Milk Base Supplementation on Texture and Headspace Concentration of Endogenous Volatile Compounds in Yogurt",
Food and Bioprocess Technology, vol. 5, no. 6: Springer, pp. 2085–2097, 2012.
Link:
http://link.springer.com/article/10.1007/s11947-010-0487-1
In the present study, the effects of milk fat (0.3% and 3.5% w/w), solids non-fat (8.4% and 13% w/w), and modified tapioca starch (0%, 0.5%, 1.0%, 1.5%, and 2.0% w/w) concentrations on the textural and physicochemical properties as well as the concentration of several endogenous flavor compounds in the headspace of set and stirred yogurts were investigated. The novel proton transfer reaction time-of-flight mass spectrometry technique was implemented for the non-invasive determination of the amounts of volatile organic compounds in the samples headspace. Milk fat and skim milk powder supplementation of the milk samples increased significantly the firmness and adhesiveness of yogurts (p < 0.001) and improved the stability of the formed gels by increasing their water holding capacity and reducing the amounts of expulsed whey (3.94 and 5.1 g for the milk fat and SNF-fortified samples). Acetaldehyde was significantly (p < 0.001) higher in the low fat-unfortified systems (6.15 ± 0.48 and 5.6 ± 0.60 ppmv, respectively). A similar trend was also reported in the case of 2-propanone (0.91 ± 0.11 and 1.13 ± 0.07 ppmv), diacetyl (334 ± 37 and 350 ± 34 ppbv), 2,3-pentanedione (54 ± 6 and 55 ± 6 ppbv), and 2-butanone (56 ± 7 and 68 ± 5 ppbv) for the same systems. In contrast, the concentration of flavor compounds in the headspace with hydroxyl groups (ethanol and acetoin) increased (p < 0.001) by solid non-fat fortification of milk base (350 ± 32 and 206 ± 7 ppbv, respectively, for the systems fortified with skim milk powder). Modified tapioca starch addition improved the textural properties and gel stability of yogurts whereas affected only the ethanol concentration (222 ± 16 and 322 ± 55 for the control and 2.0% w/w containing systems, respectively). Our data suggested that the reinforcement of textural and structural properties combined with the protein binding affinity of the flavor compounds seemed to be responsible for the aforementioned observations. In the case of stirred yogurts, the gel breakdown did not provoke significant changes in the headspace concentration of the most compounds, with the exception of ethanol, acetoin, and 2,3-pentanedione being significantly (p < 0.05) higher in the stirred yogurts (267 ± 29, 153 ± 11, and 38 ± 1 ppbv, respectively) than set style ones (232 ± 19, 134 ± 9, and 45 ± 3 ppbv, respectively).
[Cappellin2012]
Cappellin, L., C. Soukoulis, E. Aprea, P. Granitto, N. Dallabetta, F. Costa, R. Viola, T. D. Märk, F. Gasperi, and F. Biasioli,
"PTR-ToF-MS and data mining methods: a new tool for fruit metabolomics",
Metabolomics, vol. 8, no. 5: Springer, pp. 761–770, 2012.
Link:
http://link.springer.com/article/10.1007/s11306-012-0405-9
Proton Transfer Reaction-Mass Spectrometry (PTR-MS) in its recently developed implementation based on a time-of-flight mass spectrometer (PTR-ToF-MS) has been evaluated as a possible tool for rapid non-destructive investigation of the volatile compounds present in the metabolome of apple cultivars and clones. Clone characterization is a cutting-edge problem in technical management and royalty application, not only for apple, aiming at unveiling real properties which differentiate the mutated individuals. We show that PTR-ToF-MS coupled with multivariate and data mining methods may successfully be employed to obtain accurate varietal and clonal apple fingerprint. In particular, we studied the VOC emission profile of five different clones belonging to three well known apple cultivars, such as ‘Fuji’, ‘Golden Delicious’ and ‘Gala’. In all three cases it was possible to set classification models which can distinguish all cultivars and some of the clones considered in this study. Furthermore, in the case of ‘Gala’ we also identified estragole and hexyl 2-methyl butanoate contributing to such clone characterization. Beside its applied relevance, no data on the volatile profiling of apple clones are available so far, our study indicates the general viability of a metabolomic approach for volatile compounds in fruit based on rapid PTR-ToF-MS fingerprinting.
[Heenan2012]
Heenan, S., C. Soukoulis, P. Silcock, A. Fabris, E. Aprea, L. Cappellin, T. D. Märk, F. Gasperi, and F. Biasioli,
"PTR-TOF-MS monitoring of in vitro and in vivo flavour release in cereal bars with varying sugar composition",
Food chemistry, vol. 131, no. 2: Elsevier, pp. 477–484, 2012.
Link:
http://www.sciencedirect.com/science/article/pii/S0308814611012660
In the present study, PTR-TOF-MS was applied to better understand the influence of sugar composition on flavour release in a strawberry flavoured cereal bar system. To achieve this, measurements were made both statically from the headspace above cereal bar samples (in vitro) and dynamically from flavour release in the nose space during consumption (in vivo). An artificial strawberry flavour of known constituents (17 flavour active volatile compounds) was used in the preparation of cereal bars. For in vitro measurements, eight samples varying in the glucose syrup solids 42DE to polydextrose ratio were assessed. Measurements clearly showed that the level of glucose syrup solids substitution by polydextrose influenced the release of the added flavour compounds. In addition, distinguishable differences were detected for the release of volatile compounds between samples with different levels of glucose syrup solids and polydextrose during in vivo measurements. The improved mass resolution, sensitivity and speed of PTR-TOF-MS enabled direct comparisons between the rate compounds reached the nose space, maximum nose space concentration of compounds, and the time after which compounds were no longer detected in the nose-space.