[Grabmer2004]
Grabmer, W., M. Graus, C. Lindinger, A. Wisthaler, B. Rappenglück, R. Steinbrecher, and A. Hansel,
"Disjunct eddy covariance measurements of monoterpene fluxes from a Norway spruce forest using PTR-MS",
International Journal of Mass Spectrometry, vol. 239, no. 2: Elsevier, pp. 111–115, 2004.
Link:
http://www.sciencedirect.com/science/article/pii/S1387380604003914
Interest in reliable quantification of organic trace compounds released from terrestrial ecosystems stems from their impact on oxidant levels such as ozone and hydroxyl radicals and on secondary organic aerosol formation. In an attempt to quantify these emissions, a disjunct sampler (DS) was coupled to a PTR-MS instrument. In the disjunct eddy covariance (DEC) technique, an instantaneous grab sample is taken at intervals of tens of seconds and vertical wind speed is recorded at the instant of sample collection. The intermittent periods are used for sample analysis by a moderately fast chemical sensor, in this case a PTR-MS instrument, which allows for fast and sensitive detection of biogenic volatile organic compounds. The vertical turbulent transport of a trace compound is then calculated from the covariance of the fluctuations in vertical wind speed and compound mixing ratio. Fluxes of monoterpenes from a Norway spruce forest were measured during the 2002 summer intensive field campaign of BEWA2000 and results compared well with data obtained using relaxed eddy accumulation (REA) and the enclosure approach. In addition to this field experiment, a laboratory test was carried out to validate the disjunct sampling procedure.
[Yeretzian2004]
Yeretzian, C., P. Pollien, C. Lindinger, and S. Ali,
"Individualization of Flavor Preferences: Toward a Consumer-centric and Individualized Aroma Science",
Comprehensive Reviews in food science and food safety, vol. 3, no. 4: Wiley Online Library, pp. 152–159, 2004.
Link:
http://onlinelibrary.wiley.com/doi/10.1111/j.1541-4337.2004.tb00066.x/abstract
Personal dietary choices are largely based on flavor preferences. Thus understanding individual flavor perception and preference is vital to understanding the basis of human diet selection. We have developed novel tools to measure in real time and at an individual level volatile aroma compounds delivered breath-by-breath to the nose while eating and drinking. The same food may deliver different aromas to different people, due the specificities of their in-mouth environment (inter-individual differences). Moreover, a person may eat a given food in a different manner, leading to variations in the aroma profile reaching the nose (intra-individual differences). Understanding the basis of these differences opens the door to an individualized aroma science and the road to delivering nutritional value and health through products consumers prefer. The challenge to the food industry is to align what the consumer wants with what the consumer needs, delivering nutritional value and health through products they prefer.
[Roberts2004]
Roberts, DD., P. Pollien, C. Yeretzian, C. Lindinger, KD. Deibler, J. Delwiche, and ,
"Nosespace analysis with proton-transfer-reaction mass spectrometry: intra-and interpersonal variability",
Handbook of flavor characterization: sensory analysis, chemistry, and physiology, vol. -, pp. 151–162, 2004.
Link:
http://www.crcnetbase.com/doi/abs/10.1201/9780203912812.ch10