The world's leading PTR-MS company

Ultra-Sensitive Real-Time Trace Gas Analyzers  •  Modular TOF-MS for Research & OEM


You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!


Found 2 results
Title [ Year(Asc)]
Filters: Author is Mayr, D  [Clear All Filters]
[Mayr2003a] Mayr, D., T. Maerk, W. Lindinger, H. Brevard, C. Yeretzian, JL. Le Quéré, PX. Étiévant, and , "In-vivo analysis of banana aroma by Proton Transfer Reaction-Mass Spectrometry.", Flavour Research at the Dawn of the Twenty-first Century-Proceedings of the 10th Weurman Flavour Research Symposium, Beaune, France, 25-28 June, 2002.: Editions Tec & Doc, pp. 256–259, 2003.
We report on in-vivo breath-by-breath analysis of volatiles released in the mouth during eating of ripe and unripe banana using Proton Transfer Reaction-Mass Spectrometry (PTR-MS). The time-intensity profiles of isopentyl and isobutyl acetate, two key odour compounds of ripe, and (E)2-hexenal and hexanal, typical for unripe banana, are discussed. The questions we address is: how do retronasal aroma (nosespace, NS) and orthonasal aroma (headspace, HS) differ? Two main differences were noticed. First, the NS concentrations of some compounds are increased, compared to the HS, while others are decreased. Second, aroma in the mouth is dynamic, evolving with time. The in-mouth situation has characteristics of its own that may lead to an aromatic experience specific to the eating situation.
[Mayr2003] Mayr, D., R. Margesin, E. Klingsbichel, E. Hartungen, D. Jenewein, F. Schinner, and TD. Märk, "Rapid detection of meat spoilage by measuring volatile organic compounds by using proton transfer reaction mass spectrometry", Applied and environmental microbiology, vol. 69, no. 8: Am Soc Microbiol, pp. 4697–4705, 2003.
The evolution of the microbial spoilage population for air- and vacuum-packaged meat (beef and pork) stored at 4°C was investigated over 11 days. We monitored the viable counts (mesophilic total aerobic bacteria, Pseudomonas spp., Enterobacteriaceae, lactic acid bacteria, and Enterococcus spp.) by the microbiological standard technique and by measuring the emission of volatile organic compounds (VOCs) with the recently developed proton transfer reaction mass spectrometry system. Storage time, packaging type, and meat type had statistically significant (P < 0.05) effects on the development of the bacterial numbers. The concentrations of many of the measured VOCs, e.g., sulfur compounds, largely increased over the storage time. We also observed a large difference in the emissions between vacuum- and air-packaged meat. We found statistically significant strong correlations (up to 99%) between some of the VOCs and the bacterial contamination. The concentrations of these VOCs increased linearly with the bacterial numbers. This study is a first step toward replacing the time-consuming plate counting by fast headspace air measurements, where the bacterial spoilage can be determined within minutes instead of days.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:


Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.


Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics


Download the latest version of the IONICON publication database as BibTeX.