The world's leading PTR-MS company

Ultra-Sensitive Real-Time Trace Gas Analyzers  •  Modular TOF-MS for Research & OEM


You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!


Found 3 results
Title [ Year(Asc)]
Filters: Author is Turnipseed, A  [Clear All Filters]
[Kim2011] Kim, S., S. Choi, M. Lee, J. Kim, S. Lee, E. Kang, AB. Guenther, A. Turnipseed, and T. Karl, "Roles of Forest in Photochemistry near Seoul, South Korea, Preliminary findings for understanding towards", AGU Fall Meeting Abstracts, vol. 1, pp. 0441, 2011.
Recently, multiple research have highlighted important roles of BVOCs to understand regional air qualities of megacities in East Asian. The findings strongly urge multi-faceted research on emission and oxidation processes of BVOCs and potential impacts on regional air quality from the interactions between biosphere and atmosphere. To address these emerging research topics in a longer term, National Institute of Environmental Research of South Korea established a research site in the Taehwa Research Forest, located at the edge of the Seoul Metropolitan Area (population   25 million). A 40 meter high tower was built in a pine tree plantation (Pinus Koraiensis), surrounded by a natural broad leaf ecosystem. Three inlets were configured to characterize trace gas gradients, above canopy(40 m), top of the canopy (23 m) and inside of the canopy (5 m) and multi-level meteorological sensors include PAR sensors were set up. In the laboratory space, high-sensitivity Ionicon PTR-MS, and CO, NOx, SO2, and ozone analyzers are operational for continuous gradient measurements. We will present preliminary gradient measurements results of both antropogenic and biogenic VOCs to quantify emission and deposition potential of the compounds.In addition, ozone and their precursors such as CO, NOx measurement results at the site will be presented to discuss biosphere-atmosphere interactions and their impacts towards regional air quality.
[Karl2010] Karl, T., P. Harley, L. Emmons, B. Thornton, A. Guenther, C. Basu, A. Turnipseed, and K. Jardine, "Efficient atmospheric cleansing of oxidized organic trace gases by vegetation", Science, vol. 330, no. 6005: American Association for the Advancement of Science, pp. 816–819, 2010.
The biosphere is the major source and sink of nonmethane volatile organic compounds (VOCs) in the atmosphere. Gas-phase chemical reactions initiate the removal of these compounds from the atmosphere, which ultimately proceeds via deposition at the surface or direct oxidation to carbon monoxide or carbon dioxide. We performed ecosystem-scale flux measurements that show that the removal of oxygenated VOC via dry deposition is substantially larger than is currently assumed for deciduous ecosystems. Laboratory experiments indicate efficient enzymatic conversion and potential up-regulation of various stress-related genes, leading to enhanced uptake rates as a response to ozone and methyl vinyl ketone exposure or mechanical wounding. A revised scheme for the uptake of oxygenated VOCs, incorporated into a global chemistry-transport model, predicts appreciable regional changes in annual dry deposition fluxes.
[Karl2008] Karl, T., A. Guenther, A. Turnipseed, EG. Patton, K. Jardine, and , "Chemical sensing of plant stress at the ecosystem scale", Biogeosciences Discussions, vol. 5, no. 3, pp. 2381–2399, 2008.
Significant ecosystem-scale emissions of methylsalicylate (MeSA), a semivolatile plant hormone thought to act as the mobile signal for systemic acquired resistance (SAR) (Park et al., 2006), were observed in an agroforest. Our measurements show that plant internal defence mechanisms can be activated in response to temperature stress and are modulated by water availability on large scales. Highest MeSA fluxes (up to 0.25 mg/m2/h) were observed after plants experienced ambient night-time temperatures of  7.5°C followed by a large daytime temperature increase (e.g. up to 22°C). Under these conditions estimated night-time leaf temperatures were as low as  4.6°C, likely inducing a response to prevent chilling injury (Ding et al., 2002). Our observations imply that plant hormones can be a significant component of ecosystem scale volatile organic compound (VOC) fluxes (e.g. as high as the total monoterpene (MT) flux) and therefore contribute to the missing VOC budget (de Carlo et al., 2004; Goldstein and Galbally, 2007). If generalized to other ecosystems and different types of stresses these findings suggest that semivolatile plant hormones have been overlooked by investigations of the impact of biogenic VOCs on aerosol formation events in forested regions (Kulmala et al., 2001; Boy et al., 2000). Our observations show that the presence of MeSA in canopy air serves as an early chemical warning signal indicating ecosystem-scale stresses before visible damage becomes apparent. As a chemical metric, ecosystem emission measurements of MeSA in ambient air could therefore support field studies investigating factors that adversely affect plant growth.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:


Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.


Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics


Download the latest version of the IONICON publication database as BibTeX.