The world's leading PTR-MS company

Ultra-Sensitive Real-Time Trace Gas Analyzers  •  Modular TOF-MS for Research & OEM


You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!


Found 1 results
Title [ Year(Asc)]
Filters: Author is Larsen, B.  [Clear All Filters]
[Karl2002a] Karl, T.., R.. Fall, T.. N. Rosenstiel, P.. Prazeller, B.. Larsen, G.. Seufert, and W.. Lindinger, "On-line analysis of the (13)CO(2) labeling of leaf isoprene suggests multiple subcellular origins of isoprene precursors.", Planta, vol. 215, no. 6: Institut fuer Ionenphysik, Universitaet Innsbruck, Technikerstrasse 25, 6020 Innsbruck Austria., pp. 894–905, Oct, 2002.
Isoprene (2-methyl-1,3-butadiene) is the most abundant biogenic hydrocarbon released from vegetation, and there is continuing interest in understanding its biosynthesis from photosynthetic precursors in leaf chloroplasts. We used on-line proton-transfer-reaction mass spectrometry (PTR-MS) to observe the kinetics of (13)C-labeling of isoprene following exposure to (13)CO(2) and then the loss of (13)C after a return to normal (12)CO(2) in oak ( Quercus agrifolia Nee) and cottonwood (Populus deltoides Barr.) leaves. Assignments of labeled isoprene species were verified by gas chromatography-mass spectrometry. For the first time, it was possible to observe the half-lives of individually (13)C-labeled isoprene species during these transitions, and to trace some of the label to a C3 fragment that contained the two isoprene carbons derived from pyruvate via the deoxyxylulose-5-phosphate (DOXP) pathway. At steady state (under (13)CO(2)), approximately 80% of isoprene carbon was labeled, with fully labeled isoprene as the major species (approx. 60%). The source of the unlabeled C is suggested to be extrachloroplastic, but not from photorespiratory carbon. After a transfer to (12)CO(2), (13)C-labeling persisted in one isoprene carbon for several hours; this persistence was much more pronounced in (i) leaves inhibited by fosmidomycin, a specific inhibitor of the DOXP pathway, and (ii) in sun leaves which have higher ratios of soluble sugars to starch. From the mass 41-44 fragment data, and labeling predicted from the DOXP pathway in chloroplasts, precursors may arise from cytosolic pyruvate/phospho enolpyruvate equivalents transported into the chloroplast; this idea was supported by an indirect measure of pyruvate labeling. Other sources of cytosolic isoprene precursors (i.e. dimethylallyl diphosphate or pentose phosphate) could not be excluded. The data obtained shed light on the half-lives of photosynthetic metabolites, exchanges of carbon between cellular pools, and suggest multiple origins of isoprene precursors in leaves.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:


Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.


Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics


Download the latest version of the IONICON publication database as BibTeX.