Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 767 results
Title [ Year(Desc)]
1995
[Jordan1995] Jordan, A., A. Hansel, R. Holzinger, and W. Lindinger, "Acetonitrile and benzene in the breath of smokers and non-smokers investigated by proton transfer reaction mass spectrometry (PTR-MS)", International Journal of Mass Spectrometry and Ion Processes, vol. 148, no. 1-2, pp. L1 - L3, 1995.
Link: http://www.sciencedirect.com/science/article/pii/016811769504236E
Abstract
Benzene and acetonitrile are both present in greater concentrations in the breath of smokers than in non-smokers. The concentrations of these neutrals can be readily detected in the gas phase by their proton transfer reactions with H3O+. The concentration of benzene in the breath of smokers rapidly decreases with the time since the last cigarette was smoked, declining to values similar to those of non-smokers within an hour. In contrast, the concentration of acetonitrile in the breath of smokers takes nearly a week to decrease to that of non-somokers, once smoking stops. Thus the analysis of acetonitrile in the breath is a most suitable indicator of whether a given subject is or is not a smoker.
[Guenther1995] Guenther, A., N. C Hewitt, D. Erickson, R. Fall, C. Geron, T. Graedel, P. Harley, L. Klinger, M. Lerdau, WA. McKay, et al., "A global model of natural volatile organic compound emissions", Journal of Geophysical research, vol. 100, no. D5: American Geophysical Union, pp. 8873–8892, 1995.
Link: http://www.agu.org/pubs/crossref/1995/94JD02950.shtml
Abstract
Numerical assessments of global air quality and potential changes in atmospheric chemical constituents require estimates of the surface fluxes of a variety of trace gas species. We have developed a global model to estimate emissions of volatile organic compounds from natural sources (NVOC). Methane is not considered here and has been reviewed in detail elsewhere. The model has a highly resolved spatial grid (0.5°×0.5° latitude/longitude) and generates hourly average emission estimates. Chemical species are grouped into four categories: isoprene, monoterpenes, other reactive VOC (ORVOC), and other VOC (OVOC). NVOC emissions from oceans are estimated as a function of geophysical variables from a general circulation model and ocean color satellite data. Emissions from plant foliage are estimated from ecosystem specific biomass and emission factors and algorithms describing light and temperature dependence of NVOC emissions. Foliar density estimates are based on climatic variables and satellite data. Temporal variations in the model are driven by monthly estimates of biomass and temperature and hourly light estimates. The annual global VOC flux is estimated to be 1150 Tg C, composed of 44% isoprene, 11% monoterpenes, 22.5% other reactive VOC, and 22.5% other VOC. Large uncertainties exist for each of these estimates and particularly for compounds other than isoprene and monoterpenes. Tropical woodlands (rain forest, seasonal, drought-deciduous, and savanna) contribute about half of all global natural VOC emissions. Croplands, shrublands and other woodlands contribute 10–20% apiece. Isoprene emissions calculated for temperate regions are as much as a factor of 5 higher than previous estimates.
[Taucher1995] Taucher, J., A. Lagg, A. Hansel, W. Vogel, and W. Lindinger, "Methanol in human breath", Alcoholism: Clinical and Experimental Research, vol. 19, no. 5: Wiley Online Library, pp. 1147–1150, 1995.
Link: http://onlinelibrary.wiley.com/doi/10.1111/j.1530-0277.1995.tb01593.x/abstract
Abstract
Using proton transfer reaction-mass spectrometry for trace gas analysis of the human breath, the concentrations of methanol and ethanol have been measured for various test persons consuming alcoholic beverages and various amounts of fruits, respectively. The methanol concentrations increased from a natural (physiological) level of ∼ 0.4 ppm up to ∼ 2 ppm a few hours after eating about 1/2 kg of fruits, and about the same concentration was reached after drinking of 100 ml brandy containing 24% volume of ethanol and 0.19% volume of methanol.
[Hansel1995] Hansel, A., A. Jordan, R. Holzinger, P. Prazeller, W. Vogel, and W. Lindinger, "Proton transfer reaction mass spectrometry: on-line trace gas analysis at the ppb level", International Journal of Mass Spectrometry and Ion Processes, vol. 149-150, pp. 609 - 619, 1995.
Link: http://www.sciencedirect.com/science/article/pii/016811769504294U
Abstract
A system for trace gas analysis using proton transfer reaction mass spectrometry (PTR-MS) has been developed which allows for on-line measurements of components with concentrations as low as 1 ppb. The method is based on reactions of H3O+ ions, which perform non-dissociative proton transfer to most of the common organic trace constituents but do not react with any of the components present in clean air. Examples of analysis of breath taken from smokers and non-smokers as well as from patients suffering from cirrhosis of the liver, and of air in buildings as well as of ambient air taken at a road crossing demonstrate the wide range of applicability of this method. An enhanced level of acetonitrile in the breath is a most suitable indicator that a person is a smoker. Enhanced levels of propanol strongly indicate that a person has a severe liver deficiency.
1996
[Taucher1996] Taucher, J., A. Hansel, A. Jordan, and W. Lindinger, "Analysis of compounds in human breath after ingestion of garlic using proton-transfer-reaction mass spectrometry", Journal of agricultural and food chemistry, vol. 44, no. 12: ACS Publications, pp. 3778–3782, 1996.
Link: http://pubs.acs.org/doi/abs/10.1021/jf960640e
Abstract
After ingestion of raw garlic, the components allyl methyl sulfide (1), allyl methyl disulfide (2), diallyl sulfide (3), diallyl disulfide (4), diallyl trisulfide (7), dimethyl sulfide (8), and acetone (9) in the breath of a test person were analyzed over a time period of about 30 h by means of proton-transfer-reaction mass spectrometry. While the concentrations of 2−7 reached maxima shortly after ingestion of garlic and declined to baseline values within the next 2−3 h, concentrations of 1, 8, and 9 increased much more slowly and showed enhanced values even 30 h after garlic consumption. The strong increase of the concentration of acetone might be indicative of enhanced metabolism of serum cholesterol, triglycerides, and total lipids in the blood stream.
[Warneke1996] Warneke, C., J. Kuczynski, A. Hansel, A. Jordan, W. Vogel, and W. Lindinger, "Proton transfer reaction mass spectrometry (PTR-MS): propanol in human breath", International journal of mass spectrometry and ion processes, vol. 154, no. 1: Elsevier, pp. 61–70, 1996.
Link: http://www.sciencedirect.com/science/article/pii/0168117696043698
Abstract
Proton transfer reaction mass spectrometry (PTR-MS) based on reactions of H3O+ ions has been used to measure the concentrations of propanol in 46 healthy persons, yielding an average concentration of about 150 ppb. That the measurements were not obscured by other components of the same mass as propanol was proven by comparison of PTR-MS data with separate selected-ion flow-drift tube (SIFDT) investigations of the energy dependences of reactions of H3O+ and H3O+·H2O with isopropanol, n-propanol, acetic acid and methyl formate.
1997
[Lindinger1997a] Lindinger, W., and A. Hansel, "Analysis of trace gases at ppb levels by proton transfer reaction mass spectrometry (PTR-MS)", Plasma Sources Science and Technology, vol. 6, no. 2: IOP Publishing, pp. 111, 1997.
Link: http://iopscience.iop.org/0963-0252/6/2/004
Abstract
A proton transfer reaction mass spectrometry (PTR-MS) system has been developed which allows for on-line measurements of trace gas components with concentrations as low as 1 ppb. The method is based on reactions of H3O+ ions, which perform non-dissociative proton transfer to most of the common organic trace constituents but do not react with any of the components present in clean air. Examples of medical applications by means of breath analysis, examples of environmental trace gas analysis and examples in the field of food chemistry demonstrate the wide applicability of the method.
[Taucher1997] Taucher, J.., A.. Hansel, A.. Jordan, R.. Fall, J.. H. Futrell, and W.. Lindinger, "Detection of isoprene in expired air from human subjects using proton-transfer-reaction mass spectrometry.", Rapid Commun. Mass Spectrom., vol. 11, pp. 1230-4, 1997.
Link: http://www.ncbi.nlm.nih.gov/pubmed/9260307
Abstract
A new analytical method using proton-transfer-reaction mass spectrometry (PTRMS) is described for the determination of trace constituents in human breath. PTRMS is sufficiently sensitive and specific that it does not require preconcentration or separation. At its present stage of development it is capable of detecting trace constituents present in air at the part-per-billion level. These capabilities are illustrated for isoprene, one of the most abundant endogenous hydrocarbons. Our results confirm recent observations of a diurnal level variation associated with sleep or wakefulness; a new finding is that young children have much lower levels of isoprene in breath than adults. To address the metabolic origin of human isoprene, we used PTRMS to analyze expired air for allylic C5 alcohols that have been proposed to be non-enzymatic precursors of isoprene. The lack of correlation between peak breath isoprene and these alcohols suggests that the hydrocarbon is formed by some other mechanism.
[Lindinger1997] Lindinger, W., J. Taucher, A. Jordan, A. Hansel, and W. Vogel, "Endogenous production of methanol after the consumption of fruit", Alcoholism: Clinical and Experimental Research, vol. 21, no. 5: Wiley Online Library, pp. 939–943, 1997.
Link: http://onlinelibrary.wiley.com/doi/10.1111/j.1530-0277.1997.tb03862.x/abstract
Abstract
After the consumption of fruit, the concentration of methanol in the human body increases by as much as an order of magnitude. This is due to the degradation of natural pectin (which is esterified with methyl alcohol) in the human colon. In vivo tests performed by means of proton-transfer-reaction mass spectrometry show that consumed pectin in either a pure form (10 to 15 g) or a natural form (in 1 kg of apples) induces a significant increase of methanol in the breath (and by inference in the blood) of humans. The amount generated from pectin (0.4 to 1.4 g) is approximately equivalent to the total daily endogenous production (measured to be 0.3 to 0.6 g/day) or that obtained from 0.3 liters of 80-proof brandy (calculated to be 0.5 g). This dietary pectin may contribute to the development of nonalcoholic cirrhosis of the liver.
[Hansel1997] Hansel, A., W. Singer, A. Wisthaler, M. Schwarzmann, and W. Lindinger, "Energy dependencies of the proton transfer reactions H3O++ CH2O CH2OH++ H2O", International journal of mass spectrometry and ion processes, vol. 167: Elsevier, pp. 697–703, 1997.
Link: http://www.sciencedirect.com/science/article/pii/S0168117697001286
Abstract
The proton transfer reaction system View the MathML source has been investigated in both directions as a function of the mean relative kinetic energy, KEcm, between the reactants from 0.05 eV to 1 eV in a selected ion flow drift tube (SIFDT) experiment. The rate constant kf for the forward channel follows closely the calculated collisional limiting value, kc, showing a slightly negative energy dependence. The rate constant, kr, for the reverse channel, which is endoergic by 5.2 kcal mol−1, increases from kr = 2.3 × 10−12 cm3 s−1 at KEcm = 0.05 eV to kr = 2 × 10−10 cm3 s−1 at KEcm = 1 eV. This endoergic reaction is paralleled by an associative channel forming CH2OH+·H2O, which undergoes ligand switching with water molecules to produce H3O+·H2O, yielding a bond energy BE(CH2OH+−H2O) = 27.7 kcal mol−1 in agreement with previous data. The present results are important requisites to monitor the formaldehyde concentrations in air using proton transfer reactionmass spectrometry (PTR-MS).
[Jordan1997] Jordan, A., A. Hansel, C. WARNECKE, R. Holzinger, P. Prazeller, W. Vogel, and W. Lindinger, ""On-line" Spurengasanalyse im ppt-Bereich und ihre Anwendungen auf Gebieten der Medizin, Lebensmittelforschung und Luftqualität", , no. 84: Ber. nat-.med. Verein Innsbruck, pp. 7-17, 1997.
Link: http://www.landesmuseum.at/pdf_frei_remote/BERI_84_0007-0017.pdf
1998
[Hansel1998] Hansel, A., A. Jordan, C. Warneke, R. Holzinger, and W. Lindinger, "Improved detection limit of the proton-transfer reaction mass spectrometer: On-line monitoring of volatile organic compounds at mixing ratios of a few pptv", Rapid communications in mass spectrometry, vol. 12, no. 13: Wiley Online Library, pp. 871–875, 1998.
Link: http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-0231(19980715)12:13%3C871::AID-RCM245%3E3.0.CO;2-L/abstract
[Lindinger1998a] Lindinger, W., A. Hansel, and A. Jordan, "On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research", International Journal of Mass Spectrometry and Ion Processes, vol. 173, no. 3, pp. 191 - 241, 1998.
Link: http://www.sciencedirect.com/science/article/pii/S0168117697002814
Abstract
A proton transfer reaction mass spectrometer (PTR-MS) system has been developed which allows for on-line measurements of trace components with concentrations as low as a few pptv. The method is based on reactions of H3O+ ions, which perform non-dissociative proton transfer to most of the common volatile organic compounds (VOCs) but do not react with any of the components present in clean air. Medical applications by means of breath analysis allow for monitoring of metabolic processes in the human body, and examples of food research are discussed on the basis of VOC emissions from fruit, coffee and meat. Environmental applications include investigations of VOC emissions from decaying biomatter which have been found to be an important source for tropospheric acetone, methanol and ethanol. On-line monitoring of the diurnal variations of VOCs in the troposphere yield data demonstrating the present sensitivity of PTR-MS to be in the range of a few pptv. Finally, PTR-MS has proven to be an ideal tool to measure Henry's law constants and their dependencies on temperature as well as on the salt content of water.
[Lindinger1998] Lindinger, W., and A. Jordan, "Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels", Chem. Soc. Rev., vol. 27, no. 5: The Royal Society of Chemistry, pp. 347–375, 1998.
Link: http://pubs.rsc.org/en/content/articlepdf/1998/cs/a827347z
[Prazeller1998] Prazeller, P., T. Karl, A. Jordan, R. Holzinger, A. Hansel, and W. Lindinger, "Quantification of passive smoking using proton-transfer-reaction mass spectrometry", International journal of mass spectrometry, vol. 178, no. 3: Elsevier, pp. L1–L4, 1998.
Link: http://www.sciencedirect.com/science/article/pii/S1387380698141532
1999
[Warneke1999] Warneke, C., T. Karl, H. Judmaier, A. Hansel, A. Jordan, W. Lindinger, and P. J. Crutzen, "Acetone, methanol, and other partially oxidized volatile organic emissions from dead plant matter by abiological processes: Significance for atmospheric HOx chemistry", Global Biogeochem. Cycles, vol. 13, no. 1, pp. 9–17, 1999.
Link: http://onlinelibrary.wiley.com/doi/10.1029/98GB02428/full
[Prazeller1999] Prazeller, P., K. Thomas, A. Jordan Arm Hansel, and W. Lindinger, "Acetonitril als Biomarker zur Quantifizierung des Passivrauchens", Ber. nat-med. Verein Innsbruck, vol. 86: Ber. nat-.med. Verein Innsbruck, pp. 13-19, 1999.
Link: http://www.landesmuseum.at/pdf_frei_remote/BERI_86_0013-0019.pdf
[Holzinger1999] Holzinger, R., C. Warneke, A. Hansel, A. Jordan, W. Lindinger, D. H. Scharffe, G. Schade, and P. J. Crutzen, "Biomass burning as a source of formaldehyde, acetaldehyde, methanol, acetone, acetonitrile, and hydrogen cyanide", Geophysical Research Letters, vol. 26, no. 8: Wiley Online Library, pp. 1161–1164, 1999.
Link: http://onlinelibrary.wiley.com/doi/10.1029/1999GL900156/full
[Gouw1999] De Gouw, J. A., C. J. Howard, T. G. Custer, and R. Fall, "Emissions of volatile organic compounds from cut grass and clover are enhanced during the drying process", Geophysical Research Letters, vol. 26, no. 7: American Geophysical Union, pp. 811–814, 1999.
Link: http://onlinelibrary.wiley.com/doi/10.1029/1999GL900076/full
[Hansel1999] Hansel, A., A. Jordan, C. Warneke, R. Holzinger, A. Wisthaler, and W. Lindinger, "Proton-transfer-reaction mass spectrometry (PTR-MS): on-line monitoring of volatile organic compounds at volume mixing ratios of a few pptv", Plasma Sources Science and Technology, vol. 8, no. 2: IOP Publishing, pp. 332, 1999.
Link: http://iopscience.iop.org/0963-0252/8/2/314
[Boschetti1999] Boschetti, A., F. Biasioli, M. Van Opbergen, C. Warneke, A. Jordan, R. Holzinger, P. Prazeller, T. Karl, A. Hansel, W. Lindinger, et al., "PTR-MS real time monitoring of the emission of volatile organic compounds during postharvest aging of berryfruit", Postharvest Biology and Technology, vol. 17, no. 3: Elsevier, pp. 143–151, 1999.
Link: http://www.sciencedirect.com/science/article/pii/S0925521499000526
[Fall1999] Fall, R., T. Karl, A. Hansel, A. Jordan, and W. Lindinger, "Volatile organic compounds emitted after leaf wounding: on-line analysis by proton-transfer-reaction mass spectrometry", Journal of Geophysical Research, vol. 104, no. D13: American Geophysical Union, pp. 15963–15, 1999.
Link: http://www.agu.org/pubs/crossref/1999/1999JD900144.shtml
Abstract
Volatile organic compounds (VOCs) released from vegetation, including wound-induced VOCs, can have important effects on atmospheric chemistry. The analytical methods for measuring wound-induced VOCs, especially the hexenal family of VOCs (hexenals, hexenols, and hexenyl esters), are complicated by their chemical instability and the transient nature of their formation after leaf and stem wounding. Here we demonstrate that formation and emission of hexenal family compounds can be monitored on-line using proton-transfer-reaction mass spectrometry (PTR-MS), avoiding the need for preconcentration or chromatography. These measurements allow direct analysis of the rapid emission of the parent compound, (Z)-3-hexenal, within 1–2 s of wounding of aspen leaves and then its disappearance and the appearance of its metabolites including (E)-2-hexenal, hexenols, and hexenyl acetates. Similar results were seen in wounded beech leaves and clover. The emission of hexenal family compounds was proportional to the extent of wounding, was not dependent on light, occurred in attached or detached leaves, and was greatly enhanced as detached leaves dried out. Emission of (Z)-3-hexenal from detached drying aspen leaves averaged 500 μg C g−1 (dry leaf weight). Leaf wound compounds were not emitted in a nitrogen atmosphere but were released within seconds of reintroduction of oxygen; this indicates that there are not large pools of hexenyl compounds in leaves. The PTR-MS method also allows the simultaneous detection of less abundant hexanal family VOCs including hexanal, hexanol, and hexyl acetate and VOCs formed in the light (isoprene) or during anoxia (acetaldehyde). PTR-MS may be a useful tool for the analysis of VOC emissions resulting from grazing, herbivory, and other physical damage to vegetation, from harvesting of crops, and from senescing leaves.
2000
[Holzinger2000] Holzinger, R., L. Sandoval-Soto, S. Rottenberger, PJ. Crutzen, J. Kesselmeier, and , "Emissions of volatile organic compounds from Quercus ilex L. measured by proton transfer reaction mass spectrometry under different environmental conditions", Journal of Geophysical Research, vol. 105, no. D16, pp. 20573–20579, 2000.
Link: http://www.agu.org/journals/jd/jd0016/2000JD900296/pdf/2000JD900296.pdf
[Crutzen2000] Crutzen, PJ., J. Williams, U. Poeschl, P. Hoor, H. Fischer, C. Warneke, R. Holzinger, A. Hansel, W. Lindinger, B. Scheeren, et al., "High spatial and temporal resolution measurements of primary organics and their oxidation products over the tropical forests of Surinam", Atmospheric environment, vol. 34, no. 8: Elsevier, pp. 1161–1165, 2000.
Link: http://www.sciencedirect.com/science/article/pii/S1352231099004823
Abstract
Tropical forests with emissions greater than 1015 g C of reactive hydrocarbons per year strongly affect atmospheric chemistry. Here we report aircraft-borne measurements of organics during March 1998 in Surinam, a largely unpolluted region which is optimally located to study chemical processes induced by tropical forest emissions. Isoprene and its degradation products methylvinyl ketone (MVK) and methacrolein (MACR) and possibly isoprene hydroperoxides (ISOHP), were measured in the nmol mol−1 volume mixing ratio (VMR) range, consistent with estimated emissions and model calculations. In addition, high VMRs of some non-isoprene-derived organics were measured, such as acetone (≈2–4 nmol mol1 up to 12 km altitude), an important source of HO and HO2 in the upper troposphere. Moreover, several masses were measured at significant mixing ratios which could not be identified by reference to previous field measurements or gas-phase isoprene chemistry. High VMRs, almost 0.4 nmol mol−1, were also recorded for a compound which is most likely dimethyl sulphide (DMS). If so, boundary layer loss of HO by reactions with hydrocarbons and their oxidation products strongly prolongs the lifetime of DMS, allowing its transport deep into the Amazon forest south of the intertropical convergence zone (ITCZ). We postulate greater sulphate production and deposition north than south of the (ITCZ) with possible consequences for cloud and ecosystem properties.
[Hansel2000] Hansel, A., and A. Wisthaler, "A method for real-time detection of PAN, PPN and MPAN in ambient air", Geophysical research letters, vol. 27, no. 6: Wiley Online Library, pp. 895–898, 2000.
Link: http://onlinelibrary.wiley.com/doi/10.1029/1999GL010989/full

Pages

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.