Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 3 results
Title [ Year(Asc)]
Filters: Author is Kulmala, M  [Clear All Filters]
2009
[Ruuskanen2009] Ruuskanen, TM., R. Taipale, J. Rinne, MK. Kajos, H. Hakola, and M. Kulmala, "Quantitative long-term measurements of VOC concentrations by PTR-MS: annual cycle at a boreal forest site", Atmospheric Chemistry and Physics Discussions, vol. 9, no. 1: Copernicus GmbH, pp. 81–134, 2009.
Link: http://www.atmos-chem-phys-discuss.net/9/81/2009/acpd-9-81-2009.pdf
[Eerdekens2009] Eerdekens, G., N. Yassaa, V. Sinha, PP. Aalto, H. Aufmhoff, F. Arnold, V. Fiedler, M. Kulmala, and J. Williams, "VOC measurements within a boreal forest during spring 2005: on the occurrence of elevated monoterpene concentrations during night time intense particle concentration events", Atmos. Chem. Phys, vol. 9, no. 21, pp. 8331–8350, 2009.
Link: http://www.atmos-chem-phys.net/9/8331/2009/acp-9-8331-2009.html
Abstract
In this study we present measurements of selected trace gases and aerosols made in a boreal forest during the BACCI-QUEST IV intensive field campaign in Hyytiälä, Finland in April 2005. Springtime diel and vertical variations of VOCs are discussed in connection with the variations in other trace gases and with the prevailing meteorological conditions. A daytime and a nighttime event have been analysed in detail. The nighttime particle event occurred synchronously with huge increases in monoterpenes, while the second event type involved nucleation and was anti-correlated with sulphuric acid. Here we discuss the possible origins of these two distinct forms of aerosol production at the Hyytiälä site using the measurement data, air mass back trajectories and the optical stereoisomery of monoterpenes. Optical stereoisomery is used in source identification to distinguish between unnatural and natural monoterpene emissions.
2008
[Taipale2008] Taipale, R., TM. Ruuskanen, J. Rinne, MK. Kajos, H. Hakola, T. Pohja, and M. Kulmala, "Technical Note: Quantitative long-term measurements of VOC concentrations by PTR-MS–measurement, calibration, and volume mixing ratio calculation methods", Atmospheric Chemistry and Physics, vol. 8, no. 22: Copernicus GmbH, pp. 6681–6698, 2008.
Link: http://www.atmos-chem-phys.net/8/6681/2008/acp-8-6681-2008.html
Abstract
Proton transfer reaction mass spectrometry (PTR-MS) is a technique for online measurements of atmospheric concentrations, or volume mixing ratios, of volatile organic compounds (VOCs). This paper gives a detailed description of our measurement, calibration, and volume mixing ratio calculation methods, which have been designed for long-term stand-alone field measurements by PTR-MS. The PTR-MS instrument has to be calibrated regularly with a gas standard to ensure the accuracy needed in atmospheric VOC measurements. We introduce a novel method for determining an instrument specific relative transmission curve using information obtained from a calibration. This curve enables consistent mixing ratio calculation for VOCs not present in a calibration gas standard. Our method proved to be practical, systematic, and sensitive enough to capture changes in the transmission over time. We also propose a new approach to considering the abundance of H3O+H2O ions in mixing ratio calculation. The approach takes into account the difference in the transmission efficiencies for H3O+ and H3O+H2O ions. To illustrate the functionality of our measurement, calibration, and calculation methods, we present a one-month period of ambient mixing ratio data measured in a boreal forest ecosystem at the SMEAR II station in southern Finland. During the measurement period 27 March–26 April 2007, the hourly averages of the mixing ratios were 0.051–0.57 ppbv for formaldehyde, 0.19–3.1 ppbv for methanol, 0.038–0.39 ppbv for benzene, and 0.020–1.3 ppbv for monoterpenes. The detection limits for the hourly averages were 0.020, 0.060, 0.0036, and 0.0092 ppbv, respectively.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.