Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 2 results
Title [ Year(Asc)]
Filters: Author is Breitenlechner, M  [Clear All Filters]
2013
[Kohl2013a] Kohl, I., J. Beauchamp, F. Cakar-Beck, J. Herbig, J. Dunkl, O. Tietje, M. Tiefenthaler, C. Boesmueller, A. Wisthaler, M. Breitenlechner, et al., "Non-invasive detection of renal function via breath gas analysis: A potential biomarker for organ acceptance?", 6th International PTR-MS Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications, pp. 24, 2013.
Link: http://www.ionicon.com/sites/default/files/uploads/doc/contributions_ptr_ms_Conference_6.pdf
Abstract
Breath gas analysis is an emerging field that attempts to link components in exhaled breath gas with state-of-health or illness [1]. This is based on the premise that disease in the body will elicit abnormal biochemical reactions which in turn produce chemical compounds that might be excreted by the body - at least in part - via exhalation. We used PTR-MS to directly sample and analyse selected VOC constituents in the exhaled breath of patients (n=96) undergoing kidney transplantation. Breath samples were taken before surgery and then over an extended period thereafter. Comparison of PTR-MS data with routine blood-serum data revealed a specific compound (ion trace) at m/z 115 that correlated with creatinine in blood serum and daily urine production, which are the current generally-accepted markers for kidney function. PTR-TOF analyses revealed that this compound had an exact molecular mass of 114.104 u and a chemical composition of C7H14O. Subsequent analyses using PTR-QqQ-MS suggested the compound to be a C7-ketone or branched C7-aldehyde. It is hoped that the results of this study will provide impetus to other researchers in the field to further delve into the nature of this compound and its possible biochemical production routes to ascertain the eligibility of this compound for potential use in future routine breath analysis for renal function assessment.
2009
[Mueller2009] Müller, M., LH. Mielke, M. Breitenlechner, SA. McLuckey, PB. Shepson, A. Wisthaler, and A. Hansel, "MS/MS studies for the selective detection of isomeric biogenic VOCs using a Townsend Discharge Triple Quadrupole Tandem MS and a PTR-Linear Ion Trap MS", Atmospheric Measurement Techniques Discussions, vol. 2, no. 4: Copernicus GmbH, pp. 1837–1861, 2009.
Link: http://www.atmos-meas-tech-discuss.net/2/1837/2009/
Abstract
We performed MS/MS investigations of biogenic volatile organic compounds (BVOC) using a triple quadrupole tandem mass spectrometer (QqQ-MS) equipped with a Townsend Discharge ion source and a Proton Transfer Reaction Linear Ion Trap (PTR-LIT) mass spectrometer. Both instruments use H2O chemical ionization to produce protonated molecular ions. Here we report a study of the application of these instruments to determine methyl vinyl ketone (MVK) and methacrolein (MACR) and a series of monoterpenes (α-pinene, β-pinene, 3-carene, limonene, myrcene, ocimene) and sesquiterpenes (humulene and farnesene). Both instruments achieved sub-ppb detection limits in the single MS mode and in the MS/MS mode for differentiating MVK and MACR. Collision induced dissociation (CID) of protonated monoterpenes and sesquiterpenes was studied under the high-energy, single-to-few collision conditions of the QqQ-MS instrument and under the low-energy, multiple collision conditions of the PTR-LIT. Differences and similarities in the breakdown curves obtained are discussed. In addition, we performed MS4 of protonated limonene to illustrate the analytical power of the PTR-LIT. In spite of the progress we have made, the selective on-line mass-spectrometric detection of individual monoterpenes or sesquiterpenes in complex mixtures currently does not yet seem to be possible.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.