Callback Service


The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998


You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!


Found 4 results
Title [ Year(Asc)]
Filters: Author is Taipale, R  [Clear All Filters]
[Davison2009] Davison, B., R. Taipale, B. Langford, P. Misztal, S. Fares, G. Matteucci, F. Loreto, JN. Cape, J. Rinne, and CN. Hewitt, "Concentrations and fluxes of biogenic volatile organic compounds above a Mediterranean macchia ecosystem in western Italy", Biogeosciences, vol. 6: EGU, pp. 1655–1670, 2009.
Emission rates and concentrations of biogenic volatile organic compounds (BVOCs) were measured at a Mediterranean coastal site at Castelporziano, approximately 25 km south-west of Rome, between 7 May and 3 June 2007, as part of the ACCENT-VOCBAS field campaign on biosphere–atmosphere interactions. Concentrations and emission rates were measured using the disjunct eddy covariance (DEC) method utilizing three different proton transfer reaction mass spectrometers (PTR-MS) so allowing a comparison between the instruments. The high resolution data from the PTR-MS instruments considerably enhances the original BEMA measurements of the mid 1990s. Depending on the measurement period, the volume mixing ratios were in the range 1.6–3.5 ppbv for methanol, 0.44–1.3 ppbv for acetaldehyde, 0.96–2.1 ppbv for acetone, 0.10–0.14 ppbv for isoprene, and 0.13–0.30 ppbv for monoterpenes. A diurnal cycle in mixing ratios was apparent with daytime maxima for methanol, acetaldehyde, acetone, and isoprene. The fluxes ranged from 370–440 μg m−2 h−1 for methanol, 180–360 μg m−2 h−1 for acetaldehyde, 180–450 μg m−2 h−1 for acetone, 71–290 μg m−2 h−1 for isoprene, and 240–860 μg m−2 h−1 for monoterpenes. From the measured flux data (7 May–3 June) an average basal emission rate for the Macchia vegetation was calculated of 430 μg m−2 h−1 for isoprene and 1100 μg m−2 h−1 for monoterpenes.
[Rinne2009] Rinne, J., A. Ghirardo, K. Koch, R. Taipale, I. Zimmer, and J. Schnitzler, "Origin of monoterpene emissions from boreal tree species: Determination of de novo and pool emissions by 13CO2 labeling", AGU Fall Meeting Abstracts, vol. 1, pp. 04, 2009.
Boreal forests emit a large amount of monoterpenes into the atmosphere. Traditionally these emissions are assumed to originate as evaporation from large storage pools. Thus their diurnal cycle would depend mostly on temperature. However, there is indication that a significant part of the monoterpene emission would originate directly from de novo synthesis. By applying 13CO2 fumigation and analyzing the isotope fractions with proton transfer reaction mass spectrometry (PTR-MS) and classical GC-MS we studied the origin of monoterpene emissions from some major Eurasian boreal and alpine tree species. We determined the fractions originating from de novo biosynthesis and from large internal monoterpene storages for three coniferous tree species with specialized monoterpene storage structures and one dicotyledon species without such structures. The emission from dicotyledon species Betula pendula originated solely from the de novo synthesis. The origin of the emissions from coniferous species was mixed with varying fraction originating from de novo synthesis (Pinus sylvestris 58%, Picea abies 33.5%, Larix decidua 9.8%) and the rest from large internal monoterpene storage pools. Application of the observed fractions of emission originating from de novo synthesis and large storage pools in a hybrid emission algorithm resulted in a better description of ecosystem scale monoterpene emissions from a boreal Scots pine forest stand.
[Ruuskanen2009] Ruuskanen, TM., R. Taipale, J. Rinne, MK. Kajos, H. Hakola, and M. Kulmala, "Quantitative long-term measurements of VOC concentrations by PTR-MS: annual cycle at a boreal forest site", Atmospheric Chemistry and Physics Discussions, vol. 9, no. 1: Copernicus GmbH, pp. 81–134, 2009.
[Taipale2008] Taipale, R., TM. Ruuskanen, J. Rinne, MK. Kajos, H. Hakola, T. Pohja, and M. Kulmala, "Technical Note: Quantitative long-term measurements of VOC concentrations by PTR-MS–measurement, calibration, and volume mixing ratio calculation methods", Atmospheric Chemistry and Physics, vol. 8, no. 22: Copernicus GmbH, pp. 6681–6698, 2008.
Proton transfer reaction mass spectrometry (PTR-MS) is a technique for online measurements of atmospheric concentrations, or volume mixing ratios, of volatile organic compounds (VOCs). This paper gives a detailed description of our measurement, calibration, and volume mixing ratio calculation methods, which have been designed for long-term stand-alone field measurements by PTR-MS. The PTR-MS instrument has to be calibrated regularly with a gas standard to ensure the accuracy needed in atmospheric VOC measurements. We introduce a novel method for determining an instrument specific relative transmission curve using information obtained from a calibration. This curve enables consistent mixing ratio calculation for VOCs not present in a calibration gas standard. Our method proved to be practical, systematic, and sensitive enough to capture changes in the transmission over time. We also propose a new approach to considering the abundance of H3O+H2O ions in mixing ratio calculation. The approach takes into account the difference in the transmission efficiencies for H3O+ and H3O+H2O ions. To illustrate the functionality of our measurement, calibration, and calculation methods, we present a one-month period of ambient mixing ratio data measured in a boreal forest ecosystem at the SMEAR II station in southern Finland. During the measurement period 27 March–26 April 2007, the hourly averages of the mixing ratios were 0.051–0.57 ppbv for formaldehyde, 0.19–3.1 ppbv for methanol, 0.038–0.39 ppbv for benzene, and 0.020–1.3 ppbv for monoterpenes. The detection limits for the hourly averages were 0.020, 0.060, 0.0036, and 0.0092 ppbv, respectively.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:


Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.


Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics


Download the latest version of the IONICON publication database as BibTeX.