Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 4 results
Title [ Year(Asc)]
Filters: Author is Hoertnagl, L  [Clear All Filters]
2012
[Bamberger2012] Bamberger, I., L. Hoertnagl, T. Ruuskanen, R. Schnitzhofer, M. Müller, M. Graus, T. Karl, G. Wohlfahrt, and A. Hansel, "Deposition of terpenes to vegetation-a paradigm shift towards bidirectional VOC exchange?", EGU General Assembly Conference Abstracts, vol. 14, pp. 7949, 2012.
Link: http://adsabs.harvard.edu/abs/2012EGUGA..14.7949B
Abstract
Biogenic volatile organic compounds (BVOCs) are important precursors for secondary organic aerosol (SOA) formation (Hallquist et al., 2009). In addition reactive BVOCs play a crucial role in local tropospheric ozone production (Atkinson, 2000). According to the present scientific understanding vegetation is recognized as a major VOC emission source rather than a deposition sink. Our recent observations however demonstrate that an uptake of terpene compounds to mountain grassland can be significant - at least under certain atmospheric conditions. After a severe hailstorm volume mixing ratios (VMR) of locally emitted terpene compounds originating from conifers located at the mountain slopes were strongly enhanced, even during daytime hours. Weeks after the hailstorm our PTR-MS and PTR-time-of-flight (PTR-TOF) instruments still measured deposition fluxes of monoterpenes (m/z 137.133), sesquiterpenes (m/z 205.195), and oxygenated terpenes (m/z 153.128) to the grassland. The total amount of terpenoids (on a carbon basis) deposited to the grassland during the weeks after the hailstorm is comparable to the total methanol emission of the entire growing season (Bamberger et al., 2011). These findings pose the question whether the terminology should be adjusted from VOC emission to VOC exchange.
2011
[Ruuskanen2011] Ruuskanen, TM., M. Müller, R. Schnitzhofer, T. Karl, M. Graus, I. Bamberger, L. Hoertnagl, F. Brilli, G. Wohlfahrt, and A. Hansel, "Eddy covariance VOC emission and deposition fluxes above grassland using PTR-TOF", Atmos. Chem. Phys, vol. 11, pp. 611–625, 2011.
Link: http://www.atmos-chem-phys.net/11/611/2011/acp-11-611-2011.html
Abstract
Eddy covariance (EC) is the preferable technique for flux measurements since it is the only direct flux determination method. It requires a continuum of high time resolution measurements (e.g. 5–20 Hz). For volatile organic compounds (VOC) soft ionization via proton transfer reaction has proven to be a quantitative method for real time mass spectrometry; here we use a proton transfer reaction time of flight mass spectrometer (PTR-TOF) for 10 Hz EC measurements of full mass spectra up to m/z 315. The mass resolution of the PTR-TOF enabled the identification of chemical formulas and separation of oxygenated and hydrocarbon species exhibiting the same nominal mass. We determined 481 ion mass peaks from ambient air concentration above a managed, temperate mountain grassland in Neustift, Stubai Valley, Austria. During harvesting we found significant fluxes of 18 compounds distributed over 43 ions, including protonated parent compounds, as well as their isotopes and fragments and VOC-H+ – water clusters. The dominant BVOC fluxes were methanol, acetaldehyde, ethanol, hexenal and other C6 leaf wound compounds, acetone, acetic acid, monoterpenes and sequiterpenes.
2010
[Mueller2010] Müller, M., M. Graus, TM. Ruuskanen, R. Schnitzhofer, I. Bamberger, L. Kaser, T. Titzmann, L. Hoertnagl, G. Wohlfahrt, T. Karl, et al., "First eddy covariance flux measurements by PTR-TOF", Atmospheric Measurement Techniques, vol. 3, pp. 387–395, 2010.
Link: http://adsabs.harvard.edu/abs/2010AMT.....3..387M
Abstract
We have developed a High-Temperature Proton-Transfer-Reaction Mass Spectrometer (HT-PTR-MS) in which both the ion source and the ion drift tube can be continuously operated at temperatures up to 250 °C. The instrument was characterized in a high E/N-mode (130 Td) and in a low E/N-mode (87 Td) at an operating temperature of 200 °C. Instrumental sensitivities and 2σ-detection limits were on the order of 50–110 cps/ppb and 100 ppt (1 s signal integration time), respectively. The HT-PTR-MS is primarily intended for measuring "sticky" or semi-volatile trace gases. Alternatively, it may be coupled to a particle collection/thermal desorption apparatus to measure particle-bound organics in near real-time. In view of these applications, we have measured instrumental response times for a series of reference compounds. 1/e2-response times for dimethyl sulfoxide, ammonia and monoethanolamine were in the sub-second to second regime. 1/e2-response times for levoglucosan, oxalic acid and cis-pinonic acid ranged from 8 to 370 s.
[Ruuskanen2010] Ruuskanen, TM., M. Müller, R. Schnitzhofer, T. Karl, M. Graus, I. Bamberger, L. Hoertnagl, F. Brilli, G. Wohlfahrt, and A. Hansel, "VOC Emission and Deposition Eddy Covariance Fluxes above Grassland using PTR-TOF", AGU Fall Meeting Abstracts, vol. 1, pp. 0219, 2010.
Link: http://adsabs.harvard.edu/abs/2010AGUFM.A53C0219R
Abstract
Eddy covariance (EC) is the preferable technique for flux measurements since it is the only direct flux determination method. It requires a continuum of high time resolution measurements (e.g. 5-20 Hz). For volatile organic compounds (VOC) soft ionization via proton transfer reaction has proven to be a quantitative method for real time mass spectrometry; here we use a proton transfer reaction time of flight mass spectrometer (PTR-TOF) for 10 Hz EC measurements of full mass spectra up to m/z 315. The mass resolution of the PTR-TOF enabled the identification of chemical formulas and separation of oxygenated and hydrocarbon species exhibiting the same nominal mass. We determined 481 ion mass peaks from ambient air concentration above a managed, temperate mountain grassland in Neustift, Stubai Valley, Austria. During harvesting we found significant fluxes of 18 compounds distributed over 43 ions, including protonated parent compounds, as well as their isotopes and fragments and VOC-H+ - water clusters. The dominant BVOC fluxes were methanol, acetaldehyde, ethanol, hexenal and other C6 leaf wound compounds, acetone, acetic acid, monoterpenes and sequiterpenes. The smallest reliable fluxes we determined were less than 0.1 nmol m-2 s-1, as in the case of sesquiterpene emissions from freshly cut grass. Terpenoids, including mono- and sesquiterpenes, were also deposited to the grassland before and after the harvesting. During cutting, total VOC emission fluxes up to 200 nmolC m-2 s-1 were measured. Methanol emissions accounted for half of the emissions of oxygenated VOCs and a third of the carbon of all measured VOC emissions during harvesting.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.