Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 1 results
Title [ Year(Asc)]
Filters: Author is Prevot, ASH  [Clear All Filters]
2004
[Steinbacher2004] Steinbacher, M., J. Dommen, C. Ammann, C. Spirig, A. Neftel, and ASH. Prevot, "Performance characteristics of a proton-transfer-reaction mass spectrometer (PTR-MS) derived from laboratory and field measurements", International Journal of Mass Spectrometry, vol. 239, no. 2: Elsevier, pp. 117–128, 2004.
Link: http://www.sciencedirect.com/science/article/pii/S1387380604003434
Abstract
Volatile organic compounds (VOCs) play an important role in the formation of ozone and aerosols in the atmosphere. In an increasing number of field campaigns the proton-transfer-reaction mass spectrometer (PTR-MS) has proven to be a useful and fast tool for measuring VOCs and studying the relevant atmospheric processes. This work describes laboratory and field measurements with two different versions of the PTR-MS and presents important instrument specific features. The temperature stabilization and the change of the gasket material in the newer version significantly improved the performance of the instrument, as demonstrated by periodical background measurements under field conditions. The investigation of the mass discrimination illustrated the necessity of an elaborate verification. The humidity dependence of benzene was substantially lower than in former studies, which used higher drift tube pressures, but it is still higher than predicted by a simple dimer/monomer equilibrium model. An instrument comparison with a fluorescent technique was performed for formaldehyde and showed differences between pure formaldehyde calibration gases and complex ambient air samples. An intercomparison of two PTR-MSs measuring ambient air yielded satisfactory results after calibration for most of the considered masses. Comparing PTR-MS and gas chromatograph measurements of aromatic compounds, revealed a good agreement for conditions of fresh anthropogenic emissions. In photochemically aged air, many masses detected by the PTR-MS are not only influenced by anthropogenically and biogenically emitted but also oxidized VOCs.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.