Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 767 results
Title [ Year(Asc)]
2013
[1700] Zhu, L., G. Wolfgang Schade, and C. Jørgen Nielsen, "Real-time monitoring of emissions from monoethanolamine-based industrial scale carbon capture facilities.", Environ Sci Technol, vol. 47, pp. 14306–14314, Dec, 2013.
Link: http://dx.doi.org/10.1021/es4035045
Abstract
<p>We demonstrate the capabilities and properties of using Proton Transfer Reaction time-of-flight mass spectrometry (PTR-ToF-MS) to real-time monitor gaseous emissions from industrial scale amine-based carbon capture processes. The benchmark monoethanolamine (MEA) was used as an example of amines needing to be monitored from carbon capture facilities, and to describe how the measurements may be influenced by potentially interfering species in CO2 absorber stack discharges. On the basis of known or expected emission compositions, we investigated the PTR-ToF-MS MEA response as a function of sample flow humidity, ammonia, and CO2 abundances, and show that all can exhibit interferences, thus making accurate amine measurements difficult. This warrants a proper sample pretreatment, and we show an example using a dilution with bottled zero air of 1:20 to 1:10 to monitor stack gas concentrations at the CO2 Technology Center Mongstad (TCM), Norway. Observed emissions included many expected chemical species, dominantly ammonia and acetaldehyde, but also two new species previously not reported but emitted in significant quantities. With respect to concerns regarding amine emissions, we show that accurate amine quantifications in the presence of water vapor, ammonia, and CO2 become feasible after proper sample dilution, thus making PTR-ToF-MS a viable technique to monitor future carbon capture facility emissions, without conventional laborious sample pretreatment.</p>
[Rodiera2013] Rodiera, J., J. Santaliestra, J. Miquelay, A. Archidona, S. Montesinos, and C. Rodiera, "Real-time monitoring of end-tidal propofol in exhaled air: where we were, where we are, and where we would like to be. Preliminary results: 3AP2-3", European Journal of Anaesthesiology (EJA), vol. 30: LWW, pp. 41–41, 2013.
Link: http://journals.lww.com/ejanaesthesiology/Abstract/2013/06001/Real_time_monitoring_of_end_tidal_propofol_in.126.aspx
Abstract
Background and Goal of Study: There have been several studies published about the presence of propofol particles in exhaled air. However, it is not clear whether this technique can be reliable and reproducible as to have a clear impact on research or clinical practice. In the past years we have been working on improving the methodology and optimizing the results, improving sampling and data collection to increase the sensitivity and accuracy. A LabView (National Instruments) application developed allows the connection of the infusion pumps, vital signs monitor, BIS and PTR‐MS (QMS Ionicon High Sensitivity Proton Transfer Reaction Mass Spectrometer), which allows automatic real‐time data collection. We have now developed a new sampling cannula of low absorbent material (PEEK) which introduced into the oro‐tracheal tube allows taking the sample. Simultaneously, the sampling system has been improved by heating it and including a micro valve that allows air sampling, exclusively on the expiratory phase.Materials and Methods: 300 patients, 18‐60 years old both sexes ASA I II, scheduled for surgery under general anesthesia were involved. Vital signs, TCI parameters and the propofol concentration (178+1 amu), acetone (58+1 amu) and isoprene (68+1 amu) in expired air are recorded. Propofol concentrations in expired air are being compared with the plasmatic concentration and effect offered by the TCI, as well as its correlation with BIS.Results and Discussion: With the improvements introduced, the exhaled propofol can now be monitored with a reproducible method, in which variations in the propofol infusion generate changes in exhaled propofol concentration. In the preliminary results, these changes correlate with all plasma concentration, effect concentration and BIS. Preliminary results reveal that the average concentrations of propofol in air are of 48ppb for Plasmatic TCI concentrations of 2.5 mcg/ml, 55ppb for 3mcg/ml and 68ppb for 4mcg/ml we will have to wait for the completion of the study to offer more consistent and definitive results.Conclusion(s): Improvements introduced in the sample system together with the automation of data collection, allow us to perform studies in large series of patients with reproducibility and accuracy. If the results are confirmed, it could be possible to use this technique as a non invasive propofol monitoring. It would also lead to think that, in the future, a propofol pharmacokinetic model of the lung could be defined.
[Yeretzian2013] Yeretzian, C., A. N. Gloess, B. Schoenbaechler, M. Wellinger, A. Neff, and F. Wieland, "Recent Applications of PTR-ToF-MS in Coffee Research", CONFERENCE SERIES, pp. 67, 2013.
Link: http://www.ionicon.com/sites/default/files/uploads/doc/contributions_ptr_ms_Conference_6.pdf
[Hansen2013] Hansen, M. Jørgen, A. Peter S. Adamsen, and A. Feilberg, "Recovery of Odorants from an Olfactometer Measured by Proton-Transfer-Reaction Mass Spectrometry", Sensors, vol. 13, no. 6: Multidisciplinary Digital Publishing Institute, pp. 7860–7871, 2013.
Link: http://www.mdpi.com/1424-8220/13/6/7860
Abstract
The aim of the present study was to examine the recovery of odorants during the dilution in an olfactometer designed according to the European standard for dynamic olfactometry. Nine odorants in the ppmv-range were examined including hydrogen sulfide, methanethiol, dimethyl sulfide, acetic acid, propanoic acid, butanoic acid, trimethylamine, 3-methylphenol and n-butanol. Each odorant was diluted in six dilution steps in descending order from 4,096 to 128 times dilutions. The final recovery of dimethyl sulfide and n-butanol after a 60-second pulse was only slightly affected by the dilution, whereas the recoveries of the other odorants were significantly affected by the dilution. The final recoveries of carboxylic acids, trimethylamine and 3-methylphenol were affected by the pulse duration and the signals did not reach stable levels within the 60-second pulse, while sulfur compounds and n-butanol reach a stable signal within a few seconds. In conclusion, the dilution of odorants in an olfactometer has a high impact on the recovery of odorants and when olfactometry is used to estimate the odor concentration, the recoveries have to be taken into consideration for correct measurements.
[Beauchamp2013] Beauchamp, JD., and JD. Pleil, "Simply breath-taking? Developing a strategy for consistent breath sampling", Journal of Breath Research, vol. 7, no. 4: IOP Publishing, pp. 042001, 2013.
Link: http://iopscience.iop.org/1752-7163/7/4/042001
[Schuhfried2013] Schuhfried, E., M. Probst, J. Limtrakul, S. Wannakao, E. Aprea, L. Cappellin, T. D. Märk, F. Gasperi, and F. Biasioli, "Sulfides: chemical ionization induced fragmentation studied with proton transfer reaction-mass spectrometry and density functional calculations.", J Mass Spectrom, vol. 48, no. 3: Institut für Ionenphysik und Angewandte Physik, Leopold Franzens Universität Innsbruck, Technikerstr. 25, A-6020, Innsbruck, Austria., pp. 367–378, Mar, 2013.
Link: http://dx.doi.org/10.1002/jms.3153
Abstract
We report the energy-dependent fragmentation patterns upon protonation of eight sulfides (organosulfur compounds) in Proton Transfer Reaction-Mass Spectrometry (PTR-MS). Studies were carried out, both, experimentally with PTR-MS, and with theoretical quantum-chemical methods. Charge retention usually occurred at the sulfur-containing fragment for short chain sulfides. An exception to this is found in the unsaturated monosulfide allylmethyl sulfide (AMS), which preferentially fragmented to a carbo-cation at m/z 41, C3H5(+). Quantum chemical calculations (DFT with the M062X functional 6-31G(d,p) basis sets) for the fragmentation reaction pathways of AMS indicated that the most stable protonated AMS cation at m/z 89 is a protonated (cyclic) thiirane, and that the fragmentation reaction pathways of AMS in the drift tube are kinetically controlled. The protonated parent ion MH(+) is the predominant product in PTR-MS, except for diethyl disulfide at high collisional energies. The saturated monosulfides R-S-R' (with R<R') have little or no fragmentation, at the same time the most abundant fragment ion is the smaller R-S(+) fragment. The saturated disulfides R-S-S-R display more fragmentation than the saturated monosulfides, the most common fragments are disulfide containing fragments or long-chain carbo-cations. The results rationalize fragmentation data for saturated monosulfides and disulfides and represent a detailed analysis of the fragmentation of an unsaturated sulfide. Apart from the theoretical interest, the results are in support of the quantitative analysis of sulfides with PTR-MS, all the more so as PTR-MS is one of a few techniques that allow for ultra-low quantitative analysis of sulfides.
[1464] Edtbauer, A., E. Hartungen, A. Jordan, G. Hanel, J. Herbig, S. Jürschik, M. Lanza, K. Breiev, L. Märk, and P. Sulzer, "Theory and practical examples of the quantification of CH4, CO, O2, and \{CO2\} with an advanced proton-transfer-reaction/selective-reagent-ionization instrument (PTR/SRI-MS)", International Journal of Mass Spectrometry, pp. -, 2013.
Link: http://www.sciencedirect.com/science/article/pii/S1387380613004235
Abstract
<p>Abstract Following up the first introduction of an advanced proton-transfer-reaction mass spectrometry (PTR-MS) instrument in 2012, which is capable of utilizing H3O+, NO+, O2+, and Kr+, respectively, for chemical ionization and subsequent detection of a broad variety of compound classes, here we present calculations of the best suitable mixing ratios between the sample and buffer gas in Kr+ mode, as well as two possible applications of such an instrument in indoor air analysis and engine exhaust studies. Due to secondary reactions in the drift tube the admixing of a buffer gas with a higher recombination energy than Kr+ is inevitable. The calculations show that though a dilution ratio of 1:40 (sample : buffer gas) results in the highest sensitivity, for accurate substance quantification a dilution ratio of at least 1:500 is necessary. By applying this theoretical knowledge to two practical examples, we find that the quantification of CH4, CO, O2, and CO2, respectively, is well within the range of the expected concentrations. We conclude that such an instrument can be of utmost benefit for researchers working for example in environmental research, because in H3O+ mode volatile organic compounds can be quantified with very high sensitivity and low detection limits and by means of switching the reagent ions to Kr+ additional instrumentation for quantification of (inorganic) pollutants becomes virtually obsolete.</p>
[Hermann2013] Hermann, K., U. Klahre, M. Moser, H. Sheehan, T. Mandel, and C. Kuhlemeier, "Tight Genetic Linkage of Prezygotic Barrier Loci Creates a Multifunctional Speciation Island in Petunia", Current Biology: Elsevier, 2013.
Link: http://www.sciencedirect.com/science/article/pii/S0960982213003710
Abstract
Most flowering plants depend on animal vectors for pollination and seed dispersal. Differential pollinator preferences lead to premating isolation and thus reduced gene flow between interbreeding plant populations [1, 2, 3 and 4]. Sets of floral traits, adapted to attract specific pollinator guilds, are called pollination syndromes [5]. Shifts in pollination syndromes have occurred surprisingly frequently [6], considering that they must involve coordinated changes in multiple genes affecting multiple floral traits. Although the identification of individual genes specifying single pollination syndrome traits is in progress in many species, little is known about the genetic architecture of coadapted pollination syndrome traits and how they are embedded within the genome [7]. Here we describe the tight genetic linkage of loci specifying five major pollination syndrome traits in the genus Petunia: visible color, UV absorption, floral scent production, pistil length, and stamen length. Comparison with other Solanaceae indicates that, in P. exserta and P. axillaris, loci specifying these floral traits have specifically become clustered into a multifunctional “speciation island” [ 8 and 9]. Such an arrangement promotes linkage disequilibrium and avoids the dissolution of pollination syndromes by recombination. We suggest that tight genetic linkage provides a mechanism for rapid switches between distinct pollination syndromes in response to changes in pollinator availabilities.
[1595] Vesin, A., P. Glorennec, B. { Le Bot}, H. Wortham, N. Bonvallot, and E. Quivet, "Transfluthrin indoor air concentration and inhalation exposure during application of electric vaporizers.", Environ Int, vol. 60, pp. 1–6, Oct, 2013.
Link: http://dx.doi.org/10.1016/j.envint.2013.07.011
Abstract
<p>Different household insecticide applications via two electric vaporizers emitting transfluthrin were realized in a full-scale experimental room under controlled air exchange rate conditions. On-line high-time resolved measurements of the gas-phase concentrations of the active substance during and immediately after the spreading periods were performed with a High Sensitivity Proton-Transfer-Reaction Mass Spectrometer (HS-PTR-MS). Experimental and modelled data from the ConsExpo 4.0 software were also compared to evaluate the sources of differences. Different application scenarios were also compared. Averaged inhaled concentrations over 1h, 1week, and 5months were estimated to be 8.3, 1.8, and 1.8μg.m(-3), respectively. Corresponding margins of exposures range from 1000 to 10,000, claiming for the absence of effect. Dermal and dust ingestion pathways, although roughly estimated, seems being non-negligible. This claims for a more in-depth integrated risk assessment.</p>
[Jordan2013] Jordan, A., E. Hartungen, A. Edtbauer, S. Feil, G. Hanel, P. Sulzer, S. Juerschik, S. Jaksch, L. Maerk, and T. D. Maerk, "Ultra-high sensitivity Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-TOFMS)", CONFERENCE SERIES, pp. 80, 2013.
Link: http://www.ionicon.com/sites/default/files/uploads/doc/contributions_ptr_ms_Conference_6.pdf
[Schripp2013] Schripp, T., C. Fauck, N. Schulz, E. Uhde, and T. Salthammer, "Use of PTR-MS online monitoring for validation of emission test chamber experiments: Reference source and odor assessment", CONFERENCE SERIES, pp. 220, 2013.
Link: http://www.ionicon.com/sites/default/files/uploads/doc/contributions_ptr_ms_Conference_6.pdf
[Simpraga2013] Šimpraga, M., H. Verbeeck, J. Bloemen, L. Vanhaecke, M. Demarcke, E. Joó, O. Pokorska, C. Amelynck, N. Schoon, J. Dewulf, et al., "Vertical canopy gradient in photosynthesis and monoterpenoid emissions: An insight into the chemistry and physiology behind", Atmospheric Environment: Elsevier, 2013.
Link: http://www.sciencedirect.com/science/article/pii/S1352231013005785
Abstract
It is well known that vertical canopy gradients and varying sky conditions influence photosynthesis (Pn), specific leaf area (SLA), leaf thickness (LT) and leaf pigments (lutein, â-carotene and chlorophyll). In contrast, little is known about these effects on monoterpenoid (MT) emissions. Our study examines simultaneously measured Pn, MT emissions and the MT/Pn ratio along the canopy of an adult European beech tree (Fagus sylvatica L.) in natural forest conditions. Dynamic branch enclosure systems were used at four heights in the canopy (7, 14, 21 and 25 m) in order to establish relationships and better understand the interaction between Pn and MT emissions under both sunny and cloudy sky conditions. Clear differences in Pn, MT emissions and the MT/Pn ratio were detected within the canopy. The highest Pn rates were observed in the sun leaves at 25 m due to the higher intercepted light levels, whereas MT emissions (and the MT/Pn ratio) were unexpectedly highest in the semi-shaded leaves at 21 m. The higher Pn rates and, apparently contradictory, lower MT emissions in the sun leaves may be explained by the hypothesis of Owen and Peñuelas (2005), stating synthesis of more photo-protective carotenoids may decrease the emissions of volatile isoprenoids (including MTs) because they both share the same biochemical precursors. In addition, leaf traits like SLA, LT and leaf pigments clearly differed with height in the canopy, suggesting that the leaf's physiological status cannot be neglected in future research on biogenic volatile organic compounds (BVOCs) when aiming at developing new and/or improved emission algorithms.
[Benjamin2013] Benjamin, O.., P.. Silcock, J.. Beauchamp, A.. Buettner, and D.. W. Everett, "Volatile release and structural stability of β-lactoglobulin primary and multilayer emulsions under simulated oral conditions.", Food Chem, vol. 140, no. 1-2: Riddet Institute, Palmerston North, New Zealand. ofir.benjamin@otago.ac.nz, pp. 124–134, Sep, 2013.
Link: http://dx.doi.org/10.1016/j.foodchem.2013.02.043
Abstract
The relationship between emulsion structure and the release of volatile organic compounds (VOCs) was investigated using a model mouth system under oral conditions (tongue mastication, artificial saliva, pH and salt). The VOCs were monitored on-line by proton transfer reaction mass spectrometry (PTR-MS). Two types of emulsion system were compared: primary and multilayer oil-in-water (P-O/W, M-O/W) emulsions consisting of soy oil coated by β-lactoglobulin and pectin layers. The P-O/W emulsions showed intensive flocculation at pH 5 and above 200 mM NaCl where the electrostatic repulsive charge was at a minimum. Bridging and depletion flocculation were mostly observed for P-O/W emulsions containing artificial saliva with 1 wt% mucin. The VOC release was found to increase when the emulsion droplets flocculated, thus changing the oil volume phase distribution. The adsorbed pectin layer stabilised the emulsion structure under conditions of short-time oral processing, and hindered the release of hydrophobic VOCs.
2012
[Gutmann2012] Gutmann, R.., M.. Luchner, J.. Herbig, A.. Hansel, K.. Bayer, and G.. Striedner, "Advanced bioprocess monitoring by implementation of Proton Transfer Reaction - Mass Spectrometry (PTR-MS) for measurement of volatile components in the bioreactor", ACIB, Book of abstracts, vol. -, pp. -, 2012.
[Wonaschuetz2012] Wonaschuetz, A., A. Sorooshian, B. Ervens, P. Y. Chuang, G. Feingold, S. M. Murphy, J. de Gouw, C. Warneke, and H. H. Jonsson, "Aerosol and gas re-distribution by shallow cumulus clouds: An investigation using airborne measurements", Journal of Geophysical Research: Atmospheres, vol. 117, no. D17, pp. n/a–n/a, 2012.
Link: http://dx.doi.org/10.1029/2012JD018089
Abstract
Aircraft measurements during the 2006 Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) are used to examine the influence of shallow cumulus clouds on vertical profiles of aerosol chemical composition, size distributions, and secondary aerosol precursor gases. The data show signatures of convective transport of particles, gases and moisture from near the surface to higher altitudes, and of aqueous-phase production of aerosol mass (sulfate and organics) in cloud droplets and aerosol water. In cloudy conditions, the average aerosol volume concentration at an altitude of 2850 m, above typical cloud top levels, was found to be 34% of that at 450 m; for clear conditions, the same ratio was 13%. Both organic and sulfate mass fractions were on average constant with altitude (around 50%); however, the ratio of oxalate to organic mass increased with altitude (from 1% at 450 m to almost 9% at 3450 m), indicative of the influence of in-cloud production on the vertical abundance and characteristics of secondary organic aerosol (SOA) mass. A new metric termed “residual cloud fraction� is introduced as a way of quantifying the “cloud processing history� of an air parcel. Results of a parcel model simulating aqueous phase production of sulfate and organics reproduce observed trends and point at a potentially important role of SOA production, especially oligomers, in deliquesced aerosols. The observations emphasize the importance of shallow cumulus clouds in altering the vertical distribution of aerosol properties that influence both their direct and indirect effect on climate.
[Aprea2012] Aprea, E., F. Morisco, F. Biasioli, P. Vitaglione, L. Cappellin, C. Soukoulis, V. Lembo, F. Gasperi, G. D'Argenio, V. Fogliano, et al., "Analysis of breath by proton transfer reaction time of flight mass spectrometry in rats with steatohepatitis induced by high-fat diet.", J Mass Spectrom, vol. 47, no. 9: IASMA Research and Innovation Centre, Fondazione Edmund Mach, Food Quality and Nutrition Department, Via E. Mach, 1, 38010, S. Michele a/A, Italy. eugenio.aprea@iasma.it, pp. 1098–1103, Sep, 2012.
Link: http://dx.doi.org/10.1002/jms.3009
Abstract
Breath testing has been largely used as a diagnostic tool, but the difficulties in data interpretation and sample collection have limited its application. We developed a fast (< 20?s), on-line, non-invasive method for the collection and analysis of exhaled breath in awake rats based on proton transfer reaction time of flight mass spectrometry (PTR-ToF-MS) and applied it to investigate possible relationships between pathologies induced by dietary regime and breath composition. As a case study, we investigated rats with dietary induced non-alcoholic steatohepatitis (NASH) and modifications induced by coffee addition to the diet. We considered two different diets (standard and high fat) complemented with two different drinking possibilities (water or decaffeinated coffee) for a total of four groups with four rats each. Several spectrometric peaks were reliable markers for both dietary fat content and coffee supplementation. The high resolution and accuracy of PTR-ToF-MS allowed the identification of related compounds such as methanol, dimethyl sulphide, dimethyl sulphone and ammonia. In conclusion, the rapid and minimally invasive breath analysis of awake rats permitted the identification of markers related to diet and specific pathologic conditions and provided a useful tool for broader metabolic investigations.
[1613] Stefels, J., G. Carnat, J. W. H. Dacey, T. Goossens, T. M. J. Elzenga, and J-L. Tison, "The analysis of dimethylsulfide and dimethylsulfoniopropionate in sea ice: Dry-crushing and melting using stable isotope additions", Marine Chemistry, vol. 128-129, pp. 34–43, Jan, 2012.
Link: http://dx.doi.org/10.1016/j.marchem.2011.09.007
Abstract
<p>Sea ice is thought to be an important source of the climate-active gas dimethylsulfide (DMS), since extremely high concentrations of its precursor dimethylsulfoniopropionate (DMSP) have been found associated with high algal biomass. Accurate measurements of DMS and associated compounds in sea ice were until now not possible due to difficulties associated with the unavoidable melting process before analysis. Here we present and evaluate two methods to analyze DMS and DMSP in sea-ice cores accurately. The first, describes the dry-crushing method, which has its focus on the volatile compound DMS. A sub-sample of deeply frozen (&lt;&minus;30 &deg;C) ice is crushed in a stainless steel vessel and the released gas phase is analyzed directly for DMS. The remaining ice is subsequently analyzed for its total DMSP content. With this method, DMS and DMSP profiles can be resolved even in ice cores stored deeply frozen for two years. The second method, involves a melting procedure, during which the conversion of compounds is monitored by adding differently deuterated isotopes of DMS and DMSP. Natural concentrations and stable isotopes of DMS and DMSP are simultaneously analyzed on a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS). Loss and conversion rates of the artificial isotopes are used to reconstruct the original concentrations of DMS and DMSP in ice and give important information on potential dynamical processes in sea-ice communities. It is concluded that in stored cores, the dry-crushing method provides the best results when the aim of the study is to differentiate between DMS and DMSP. When direct processing and analysis of the samples is possible, the isotope-addition method has the potential of providing concentrations of all S-compounds, including dissolved and particulate fractions. Moreover, it is suitable for the determination of process rates within the S-cycle.</p>
[Mueller2012] Müller, M., M. Graus, A. Wisthaler, A. Hansel, A. Metzger, J. Dommen, and U. Baltensperger, "Analysis of high mass resolution PTR-TOF mass spectra from 1, 3, 5-trimethylbenzene (TMB) environmental chamber experiments", Atmospheric Chemistry and Physics, vol. 12, no. 2: Copernicus GmbH, pp. 829–843, 2012.
Link: http://www.atmos-chem-phys.net/12/829/
Abstract
A series of 1,3,5-trimethylbenzene (TMB) photo-oxidation experiments was performed in the 27-m3 Paul Scherrer Institute environmental chamber under various NOx conditions. A University of Innsbruck prototype high resolution Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-TOF) was used for measurements of gas and particulate phase organics. The gas phase mass spectrum displayed  200 ion signals during the TMB photo-oxidation experiments. Molecular formulas CmHnNoOp were determined and ion signals were separated and grouped according to their C, O and N numbers. This allowed to determine the time evolution of the O:C ratio and of the average carbon oxidation state OSC of the reaction mixture. Both quantities were compared with master chemical mechanism (MCMv3.1) simulations. The O:C ratio in the particle phase was about twice the O:C ratio in the gas phase. Average carbon oxidation states of secondary organic aerosol (SOA) samples OSCSOA were in the range of −0.34 to −0.31, in agreement with expected average carbon oxidation states of fresh SOA (OSC = −0.5–0).
[Hansen2012a] Hansen, M. J., D. Liu, L. Bonne Guldberg, and A. Feilberg, "Application of proton-transfer-reaction mass spectrometry to the assessment of odorant removal in a biological air cleaner for pig production.", J Agric Food Chem, vol. 60, no. 10: Department of Engineering, Faculty of Science and Technology, Aarhus University, Tjele, Denmark. michaelj.hansen@agrsci.dk, pp. 2599–2606, Mar, 2012.
Link: http://dx.doi.org/10.1021/jf300182c
Abstract
There is an urgent need to develop odor reduction technologies for animal production facilities, and this requires a reliable measurement technique for estimating the removal of odorants. The purpose of the present experiment was to investigate the application of proton-transfer-reaction mass spectrometry (PTR-MS) for continuous measurements at a biofilter from SKOV A/S installed at a pig production facility. PTR-MS was able to handle the harsh conditions with high humidity and dust load in a biofilter and provide reliable data for the removal of odorants, including the highly odorous sulfur compounds. The biofilter removed 80-99% of carboxylic acids, aldehydes, ketones, phenols, and indoles and ca. 75% of hydrogen sulfide. However, only  0-15% of methanethiol and dimethyl sulfide was removed. In conclusion, PTR-MS is a promising tool that can be used to improve the development of biological air cleaning and other odor reduction technologies toward significant odorants.
[Kohl2012] Kohl, I.., J.. Dunkl, J.. Herbig, M.. Hubalek, H.. Fiegl, and M.. Daniaux, "Atemgasanalyse fuer eine zukuenftige nicht-invasive Medizin", GYNAEKOLOGISCHE ONKOLOGIE, vol. 6, pp. 21, 2012.
Link: http://www.medmedia.at/gyn-aktiv/zukunft-des-brustkrebsscreenings-atemgasanalyse-fur-eine-zukunftige-nicht-invasive-medizin/
Abstract
Die Zusammensetzung der Atemluft kann durch Erkrankungen verändert werden. Mit Hilfe von modernen analytischen Messmethoden versucht die Forschung, Zusammenhänge ­zwischen einzelnen Chemikalien und physiologischen bzw. pathologischen Vorgängen fest­zustellen. Ziel ist die nicht-invasive Frühdiagnostik von Krankheiten durch Atemgasanalysen. In einer Pilotstudie an der Innsbrucker Universitäts-Fraukenklinik wurden Atemgasproben von Brustkrebspatientinnen systematisch mit einer hochempfindlichen Methode analysiert. Eine ­signifikante ­Erniedrigung der Isopren-Konzentration der ausgeatmeten Luft vs. gesunde Kontrollen ist konsistent mit den ­Ergebnissen von Atemgasstudien bei Lungenkrebspatientinnen.
[Krug2012] Krug, S.., G.. Kastenmueller, F.. Stueckler, M.. J. Rist, T.. Skurk, M.. Sailer, J.. Raffler, W.. Roemisch-Margl, J.. Adamski, C.. Prehn, et al., "Atemgasanalyse fuer eine zukuenftige nicht-invasive Medizin", The FASEB Journal, Research Communication, vol. 12, pp. 2607, 2012.
Link: http://dx.doi.org/10.1096/fj.11-198093
Abstract
Metabolic challenge protocols, such as the oral glucose tolerance test, can uncover early alterations in metabolism preceding chronic diseases. Nevertheless, most metabolomics data accessible today reflect the fasting state. To analyze the dynamics of the human metabolome in response to environmental stimuli, we submitted 15 young healthy male volunteers to a highly controlled 4 d challenge protocol, including 36 h fasting, oral glucose and lipid tests, liquid test meals, physical exercise, and cold stress. Blood, urine, exhaled air, and breath condensate samples were analyzed on up to 56 time points by MS- and NMR-based methods, yielding 275 metabolic traits with a focus on lipids and amino acids. Here, we show that physiological challenges increased interindividual variation even in phenotypically similar volunteers, revealing metabotypes not observable in baseline metabolite profiles; volunteer-specific metabolite concentrations were consistently reflected in various biofluids; and readouts from a systematic model of β-oxidation (e.g., acetylcarnitine/palmitylcarnitine ratio) showed significant and stronger associations with physiological parameters (e.g., fat mass) than absolute metabolite concentrations, indicating that systematic models may aid in understanding individual challenge responses. Due to the multitude of analytical methods, challenges and sample types, our freely available metabolomics data set provides a unique reference for future metabolomics studies and for verification of systems biology models.
[Righettoni2012] Righettoni, M., A. Tricoli, S. Gass, A. Schmid, A. Amann, and S. E. Pratsinis, "Breath acetone monitoring by portable Si:WO3 gas sensors.", Anal Chim Acta, vol. 738: Particle Technology Laboratory, Department of Mechanical and Process Engineering ETH Zurich, CH-8092 Zurich, Switzerland., pp. 69–75, Aug, 2012.
Link: http://dx.doi.org/10.1016/j.aca.2012.06.002
Abstract
Breath analysis has the potential for early stage detection and monitoring of illnesses to drastically reduce the corresponding medical diagnostic costs and improve the quality of life of patients suffering from chronic illnesses. In particular, the detection of acetone in the human breath is promising for non-invasive diagnosis and painless monitoring of diabetes (no finger pricking). Here, a portable acetone sensor consisting of flame-deposited and in situ annealed, Si-doped epsilon-WO(3) nanostructured films was developed. The chamber volume was miniaturized while reaction-limited and transport-limited gas flow rates were identified and sensing temperatures were optimized resulting in a low detection limit of acetone (?20ppb) with short response (10-15s) and recovery times (35-70s). Furthermore, the sensor signal (response) was robust against variations of the exhaled breath flow rate facilitating application of these sensors at realistic relative humidities (80-90%) as in the human breath. The acetone content in the breath of test persons was monitored continuously and compared to that of state-of-the-art proton transfer reaction mass spectrometry (PTR-MS). Such portable devices can accurately track breath acetone concentration to become an alternative to more elaborate breath analysis techniques.
[Sinha2012a] Sinha, V., J. Williams, JM. Diesch, F. Drewnick, M. Martinez, H. Harder, E. Regelin, D. Kubistin, H. Bozem, Z. Hosaynali-Beygi, et al., "Constraints on instantaneous ozone production rates and regimes during DOMINO derived using in-situ OH reactivity measurements", Atmospheric Chemistry and Physics, vol. 12, no. 15: Copernicus GmbH, pp. 7269–7283, 2012.
Link: http://www.atmos-chem-phys.net/12/7269/2012/acp-12-7269-2012.pdf
Abstract
In this study air masses are characterized in terms of their total OH reactivity which is a robust measure of the "reactive air pollutant loading". The measurements were performed during the DOMINO campaign (Diel Oxidant Mechanisms In relation to Nitrogen Oxides) held from 21/11/2008 to 08/12/2008 at the Atmospheric Sounding Station – El Arenosillo (37.1° N–6.7° W, 40 m a.s.l.). The site was frequently impacted by marine air masses (arriving at the site from the southerly sector) and air masses from the cities of Huelva (located NW of the site), Seville and Madrid (located NNE of the site). OH reactivity values showed strong wind sector dependence. North eastern "continental" air masses were characterized by the highest OH reactivities (average: 31.4 ± 4.5 s−1; range of average diel values: 21.3–40.5 s−1), followed by north western "industrial" air masses (average: 13.8 ± 4.4 s−1; range of average diel values: 7–23.4 s−1) and marine air masses (average: 6.3 ± 6.6 s−1; range of average diel values: below detection limit −21.7 s−1), respectively. The average OH reactivity for the entire campaign period was  18 s−1 and no pronounced variation was discernible in the diel profiles with the exception of relatively high values from 09:00 to 11:00 UTC on occasions when air masses arrived from the north western and southern wind sectors. The measured OH reactivity was used to constrain both diel instantaneous ozone production potential rates and regimes. Gross ozone production rates at the site were generally limited by the availability of NOx with peak values of around 20 ppbV O3 h−1. Using the OH reactivity based approach, derived ozone production rates indicate that if NOx would no longer be the limiting factor in air masses arriving from the continental north eastern sector, peak ozone production rates could double. We suggest that the new combined approach of in-situ fast measurements of OH reactivity, nitrogen oxides and peroxy radicals for constraining instantaneous ozone production rates, could significantly improve analyses of upwind point sources and their impact on regional ozone levels.
[Trowbridge2012] Trowbridge, A. M., D. Asensio, A. S. D. Eller, D. A. Way, M. J. Wilkinson, J-P. Schnitzler, R. B. Jackson, and R. K. Monson, "Contribution of various carbon sources toward isoprene biosynthesis in poplar leaves mediated by altered atmospheric CO2 concentrations.", PLoS One, vol. 7, no. 2: Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America. amy.m.trowbridge@gmail.com, pp. e32387, 2012.
Link: http://dx.doi.org/10.1371/journal.pone.0032387
Abstract
Biogenically released isoprene plays important roles in both tropospheric photochemistry and plant metabolism. We performed a (13)CO(2)-labeling study using proton-transfer-reaction mass spectrometry (PTR-MS) to examine the kinetics of recently assimilated photosynthate into isoprene emitted from poplar (Populus x canescens) trees grown and measured at different atmospheric CO(2) concentrations. This is the first study to explicitly consider the effects of altered atmospheric CO(2) concentration on carbon partitioning to isoprene biosynthesis. We studied changes in the proportion of labeled carbon as a function of time in two mass fragments, M41(+), which represents, in part, substrate derived from pyruvate, and M69(+), which represents the whole unlabeled isoprene molecule. We observed a trend of slower (13)C incorporation into isoprene carbon derived from pyruvate, consistent with the previously hypothesized origin of chloroplastic pyruvate from cytosolic phosphenolpyruvate (PEP). Trees grown under sub-ambient CO(2) (190 ppmv) had rates of isoprene emission and rates of labeling of M41(+) and M69(+) that were nearly twice those observed in trees grown under elevated CO(2) (590 ppmv). However, they also demonstrated the lowest proportion of completely labeled isoprene molecules. These results suggest that under reduced atmospheric CO(2) availability, more carbon from stored/older carbon sources is involved in isoprene biosynthesis, and this carbon most likely enters the isoprene biosynthesis pathway through the pyruvate substrate. We offer direct evidence that extra-chloroplastic rather than chloroplastic carbon sources are mobilized to increase the availability of pyruvate required to up-regulate the isoprene biosynthesis pathway when trees are grown under sub-ambient CO(2).
[Miekisch2012] Miekisch, W., J. Herbig, and J. K. Schubert, "Data interpretation in breath biomarker research: pitfalls and directions", Journal of Breath Research, vol. 6, no. 3, pp. 036007, 2012.
Link: http://www.ncbi.nlm.nih.gov/pubmed/22854185

Pages

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.