Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 9 results
Title [ Year(Asc)]
Filters: Author is Liu, Dezhao  [Clear All Filters]
2014
[1601] Liu, D., M. Marie Løkke, A. Leegaard Riis, K. Mortensen, and A. Feilberg, "Evaluation of clay aggregate biotrickling filters for treatment of gaseous emissions from intensive pig production.", J Environ Manage, vol. 136, pp. 1–8, Apr, 2014.
Link: http://dx.doi.org/10.1016/j.jenvman.2014.01.023
Abstract
<p>Treatment of ventilation air from livestock production by biological airfiltration has emerged as a cost-effective technology for reduction of emissions of odorants and ammonia. Volatile sulfur compounds from livestock production include H2S and methanethiol, which have been identified as potentially important odorants that are not removed sufficiently by biological air filters. Light-expanded clay aggregates (Leca(&reg;)) is a biotrickling filter material that contains iron oxides, which can oxidize H2S and methanethiol, and thus potentially may help to remove these two compounds in biological air filters. This study used on-line PTR-MS measurements to investigate the performances of two Leca(&reg;) biotrickling filters (abraded Leca(&reg;) filter and untreated Leca(&reg;) filter) for removal of odorants and ammonia emitted from an experimental pig house. The results indicated that the abraded Leca(&reg;) filter had a similar or slightly better capability for removing odorants than the untreated Leca(&reg;) filter. This may be due to the enlargement of the surface area by the friction process. The volatile sulfur compounds, however, were not removed efficiently by either of the two Leca(&reg;) filters. Kinetic analysis of a ventilation controlled experiment during the first period indicated that Grau second-order kinetics could be applied to analyze the removal of sulfur compounds and other odorants, whereas the Stover-Kincannon model could only be applied to analyze the removal of odorants other than sulfur compounds, partly due to the limitation of mass transfer of these compounds in the biotrickling filters. In the last measurement period, a production of dimethyl disulfide and dimethyltrisulfide coinciding with strongly enhanced removal of methanethiol was observed for the untreated filter. This was assumed to be enhanced by an incidence of low local air velocity in the filter and indicated involvement of iron-catalyzed reactions in the removal of sulfur compounds.</p>
2013
[Nyord2013] Nyord, T., D. Liu, J. Eriksen, and A. Peter S. Adamsen, "Effect of acidification and soil injection of animal slurry on ammonia and odour emission", , 2013.
Link: http://ramiran.net/doc13/Proceeding_2013/documents/S9.14..pdf
Abstract
Laboratory and field experiments examined ammonia (NH3) emissions after application of slurry on packed soil or fields. Acidified slurry reduced NH3 emissions significantly, and the greatest effect was obtained by lowering the pH from 7.8 to 6.8. The field trial demonstrated two acidification techniques to lower the slurry pH with good reduction of NH3 emission. NH3 emission was at the same level with soil injection of un-acidified slurry as acidified slurry applied by trailing hoses. In addition, we tested the development of some odorous compounds by covering the fields after application of un-treated or treated slurry with static chambers and measured the development of some odorous compound by proton-transfer-reaction mass spectrometry (PTR-MS).
[Feilberg2013] Feilberg, A., D. Liu, and M. Jørgen Hansen, "Measurement of H2S by PTR-MS: Experiences and implications", CONFERENCE SERIES, pp. 98, 2013.
Link: http://www.ionicon.com/sites/default/files/uploads/doc/contributions_ptr_ms_Conference_6.pdf
[Liu2013] Liu, D., A. Feilberg, A. Michael Nielsen, and A. Peter S. Adamsen, "PTR-MS measurement of partition coefficients of reduced volatile sulfur compounds in liquids from biotrickling filters.", Chemosphere, vol. 90, no. 4: Dept. of Engineering, Aarhus University, Blichers Alle 20, DK-8830 Tjele, Denmark., pp. 1396–1403, Jan, 2013.
Link: http://dx.doi.org/10.1016/j.chemosphere.2012.07.068
Abstract
Biological air filtration for reduction of emissions of volatile sulfur compounds (e.g., hydrogen sulfide, methanethiol and dimethyl sulfide) from livestock production facilities is challenged by poor partitioning of these compounds into the aqueous biofilm or filter trickling water. In this study, Henry's law constants of reduced volatile sulfur compounds were measured for deionized water, biotrickling filter liquids (from the first and second stages of a two-stage biotrickling filter), and NaCl solutions by a dynamic method using Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) at a temperature range of 3-45°C. NaCl solutions were used to estimate salting-out constants up to an ionic strength of 0.7 M in order to evaluate the effect of ionic strength on partitioning between air and biofilter liquids. Thermodynamic parameters (enthalpy and entropy of phase exchange) were obtained from the measured partition coefficients as a function of temperature. The results show that the partition coefficients of organic sulfur compounds in the biotrickling filter liquids were generally very close to the corresponding partition coefficients in deionized water. Based on the estimated ionic strength of biofilter liquids, it is assessed that salting-out effects are of no importance for these compounds. For H(2)S, a higher enthalpy of air-liquid partitioning was observed for 2nd stage filter liquid, but not for 1st stage filter liquid. In general, the results show that co-solute effects for sulfur compounds can be neglected in numerical biofilter models and that the uptake of volatile sulfur compounds in biotrickling filter liquids cannot be increased by decreasing ionic strength.
2012
[Hansen2012a] Hansen, M. J., D. Liu, L. Bonne Guldberg, and A. Feilberg, "Application of proton-transfer-reaction mass spectrometry to the assessment of odorant removal in a biological air cleaner for pig production.", J Agric Food Chem, vol. 60, no. 10: Department of Engineering, Faculty of Science and Technology, Aarhus University, Tjele, Denmark. michaelj.hansen@agrsci.dk, pp. 2599–2606, Mar, 2012.
Link: http://dx.doi.org/10.1021/jf300182c
Abstract
There is an urgent need to develop odor reduction technologies for animal production facilities, and this requires a reliable measurement technique for estimating the removal of odorants. The purpose of the present experiment was to investigate the application of proton-transfer-reaction mass spectrometry (PTR-MS) for continuous measurements at a biofilter from SKOV A/S installed at a pig production facility. PTR-MS was able to handle the harsh conditions with high humidity and dust load in a biofilter and provide reliable data for the removal of odorants, including the highly odorous sulfur compounds. The biofilter removed 80-99% of carboxylic acids, aldehydes, ketones, phenols, and indoles and ca. 75% of hydrogen sulfide. However, only  0-15% of methanethiol and dimethyl sulfide was removed. In conclusion, PTR-MS is a promising tool that can be used to improve the development of biological air cleaning and other odor reduction technologies toward significant odorants.
[Feilberg2012] Feilberg, A., D. Liu, C. Lunde Pedersen, and M. Jørgen Hansen, "Optimization of Biological Air Filters for Livestock Production Facilities", International conference on environmental odour monitoring and control, 2012.
Link: http://pure.au.dk/portal/en/activities/optimization-of-biological-air-filters-for-livestock-production-facilities(3a3304cb-6664-4fd6-810f-5a040cd26fe7).html
2011
[Liu2011] Liu, D., A. Feilberg, A. P. S. Adamsen, and K. E. N. Jonassen, "The effect of slurry treatment including ozonation on odorant reduction measured by in-situ PTR-MS", Atmospheric Environment, vol. 45, no. 23: Elsevier, pp. 3786–3793, 2011.
Link: http://www.sciencedirect.com/science/article/pii/S1352231011004067
Abstract
The emission of odorous compounds from intensive pig production facilities is a nuisance for neighbors. Slurry ozonation for odor abatement has previously been demonstrated in laboratory scale. In this study, the effect of slurry ozonation (combined with solid–liquid pre-separation and acidification) on emissions of odorous compounds was tested in an experimental full-scale growing pig facility using Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) for online analysis of odorants. The measurements were performed to gain a better understanding of the effects of ozone treatment on emissions odorous compounds and to identify potential options for optimization of ozone treatment. The compounds monitored included volatile sulfur compounds, amine, carboxylic acids, ketones, phenols and indoles. Measurements were performed during nearly a one-month period in summertime. The compounds with the highest concentrations observed in the ventilation exhaust duct were acetic acid, hydrogen sulfide, propanoic acid and butanoic acid. The compounds with the highest removal efficiencies were hydrogen sulfide, 3-methyl-indole, phenol and acetic acid. Based on odor threshold values, methanethiol, butanoic acid, 4-methylphenol, hydrogen sulfide and C5 carboxylic acids are estimated to contribute significantly to the odor nuisance. Emissions of odorous compounds were observed to be strongly correlated with temperature with the exception of hydrogen sulfide. Emission peaks of sulfur compounds were seen during slurry handling activities. Discharging of the slurry pit led to reduced hydrogen sulfide emissions, but emissions of most other odorants were not affected. The results indicate that emissions of odorants other than hydrogen sulfide mainly originate from sources other than the treated slurry, which limits the potential for further optimization. The PTR-MS measurements are demonstrated to provide a quantitative, accurate and detailed evaluation of ozone treatment for emission reduction.
2010
[Feilberg2010b] Feilberg, A., A. Peter S. Adamsen, D. Liu, M. Jørgen Hansen, and P. Bildsøe, "Effects of air Exchange, Temperature and slurry management on odorant Emissions from pig Production units and slurry tanks studied by Proton-Transfer-Reaction mass spectometry (PTR-MS)", World Congress of the International Commission of Agricultural and Biosystems Engineering (CIGR), 2010.
Link: http://www.csbe-scgab.ca/docs/meetings/2010/CSBE101079.pdf
[Feilberg2010] Feilberg, A., D. Liu, A. P. S. Adamsen, M. J. Hansen, and K. E. N. Jonassen, "Odorant emissions from intensive pig production measured by online proton-transfer-reaction mass spectrometry.", Environ Sci Technol, vol. 44, no. 15: Department of Biosystems Engineering, Aarhus University, Blichers Alle 20, DK-8830 Tjele, Denmark. anders.feilberg@agrsci.dk, pp. 5894–5900, Aug, 2010.
Link: http://dx.doi.org/10.1021/es100483s
Abstract
Emission of odorous compounds from intensive livestock production is a cause of nuisance in populated rural areas. Knowledge on the chemical composition of odor and temporal variations in emissions are needed in order to identify factors of importance for emission rates and select proper abatement technologies. In this work, a method based on proton-transfer-reaction mass spectrometry (PTR-MS) has been developed and tested for continuous measurements of odorant emissions from intensive pig production facilities. The method is assessed to cover all presently known important odorants from this type of animal production with adequate sensitivity and a time resolution of less than one minute. The sensitivity toward hydrogen sulfide is demonstrated to exhibit a pronounced humidity dependency, which can be included in the calibration procedure in order to achieve quantitative results for this compound. Application of the method at an experimental pig facility demonstrated strong temporal variations in emissions, including diurnal variation. Based on these first results, air exchange and animal activity are suggested to be of importance for emission rates of odorants. Highest emissions are seen for hydrogen sulfide and acetic acid, whereas key odorants are evaluated from tabulated odor threshold values to be hydrogen sulfide, methanethiol, 4-methylphenol, and butanoic acid.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.