Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 2 results
Title [ Year(Asc)]
Filters: Author is Fogliano, Vincenzo  [Clear All Filters]
2013
[Morisco2013] Morisco, F., E. Aprea, V. Lembo, V. Fogliano, P. Vitaglione, G. Mazzone, L. Cappellin, F. Gasperi, S. Masone, G. Domenico { De Palma}, et al., "Rapid "breath-print" of liver cirrhosis by proton transfer reaction time-of-flight mass spectrometry. A pilot study.", PLoS One, vol. 8, no. 4: Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy. filomena.morisco@unina.it, pp. e59658, 2013.
Link: http://dx.doi.org/10.1371/journal.pone.0059658
Abstract
The aim of the present work was to test the potential of Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) in the diagnosis of liver cirrhosis and the assessment of disease severity by direct analysis of exhaled breath. Twenty-six volunteers have been enrolled in this study: 12 patients (M/F 8/4, mean age 70.5 years, min-max 42-80 years) with liver cirrhosis of different etiologies and at different severity of disease and 14 healthy subjects (M/F 5/9, mean age 52.3 years, min-max 35-77 years). Real time breath analysis was performed on fasting subjects using a buffered end-tidal on-line sampler directly coupled to a PTR-ToF-MS. Twelve volatile organic compounds (VOCs) resulted significantly differently in cirrhotic patients (CP) compared to healthy controls (CTRL): four ketones (2-butanone, 2- or 3- pentanone, C8-ketone, C9-ketone), two terpenes (monoterpene, monoterpene related), four sulphur or nitrogen compounds (sulfoxide-compound, S-compound, NS-compound, N-compound) and two alcohols (heptadienol, methanol). Seven VOCs (2-butanone, C8-ketone, a monoterpene, 2,4-heptadienol and three compounds containing N, S or NS) resulted significantly differently in compensate cirrhotic patients (Child-Pugh A; CP-A) and decompensated cirrhotic subjects (Child-Pugh B+C; CP-B+C). ROC (Receiver Operating Characteristic) analysis was performed considering three contrast groups: CP vs CTRL, CP-A vs CTRL and CP-A vs CP-B+C. In these comparisons monoterpene and N-compound showed the best diagnostic performance.Breath analysis by PTR-ToF-MS was able to distinguish cirrhotic patients from healthy subjects and to discriminate those with well compensated liver disease from those at more advanced severity stage. A breath-print of liver cirrhosis was assessed for the first time.
2012
[Aprea2012] Aprea, E., F. Morisco, F. Biasioli, P. Vitaglione, L. Cappellin, C. Soukoulis, V. Lembo, F. Gasperi, G. D'Argenio, V. Fogliano, et al., "Analysis of breath by proton transfer reaction time of flight mass spectrometry in rats with steatohepatitis induced by high-fat diet.", J Mass Spectrom, vol. 47, no. 9: IASMA Research and Innovation Centre, Fondazione Edmund Mach, Food Quality and Nutrition Department, Via E. Mach, 1, 38010, S. Michele a/A, Italy. eugenio.aprea@iasma.it, pp. 1098–1103, Sep, 2012.
Link: http://dx.doi.org/10.1002/jms.3009
Abstract
Breath testing has been largely used as a diagnostic tool, but the difficulties in data interpretation and sample collection have limited its application. We developed a fast (< 20?s), on-line, non-invasive method for the collection and analysis of exhaled breath in awake rats based on proton transfer reaction time of flight mass spectrometry (PTR-ToF-MS) and applied it to investigate possible relationships between pathologies induced by dietary regime and breath composition. As a case study, we investigated rats with dietary induced non-alcoholic steatohepatitis (NASH) and modifications induced by coffee addition to the diet. We considered two different diets (standard and high fat) complemented with two different drinking possibilities (water or decaffeinated coffee) for a total of four groups with four rats each. Several spectrometric peaks were reliable markers for both dietary fat content and coffee supplementation. The high resolution and accuracy of PTR-ToF-MS allowed the identification of related compounds such as methanol, dimethyl sulphide, dimethyl sulphone and ammonia. In conclusion, the rapid and minimally invasive breath analysis of awake rats permitted the identification of markers related to diet and specific pathologic conditions and provided a useful tool for broader metabolic investigations.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.