Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 2 results
Title [ Year(Asc)]
Filters: Author is Fares, Silvano  [Clear All Filters]
2013
[Fares2013] Fares, S., R. Schnitzhofer, X. Jiang, A. Guenther, A. Hansel, and F. Loreto, "Observations of diurnal to weekly variations of monoterpene-dominated fluxes of volatile organic compounds from Mediterranean forests: implications for regional modeling.", Environ Sci Technol, Sep, 2013.
Link: http://dx.doi.org/10.1021/es4022156
Abstract
The Estate of Castelporziano (Rome, Italy) hosts many ecosystems representative of Mediterranean vegetation, especially holm oak and pine forests, and dune vegetation. In this work, Basal Emission Factors (BEFs) of biogenic volatile organic compounds (BVOCs) obtained by Eddy Covariance in a field campaign using a Proton Transfer Reaction - Time of Flight - Mass Spectrometer (PTR-TOF-MS) were compared to BEFs reported in previous studies that could not measure fluxes in real-time. Globally, broadleaf forests are dominated by isoprene emissions, but these Mediterranean ecosystems are dominated by strong monoterpene emitters, as shown by the new BEFs. The original and new BEFs were used to parameterize the Model of Emissions of Gases and Aerosols from Nature (MEGAN v2.1), and model outputs were compared with measured fluxes. Results showed good agreement between modelled and measured fluxes when a model was used to predict radiative transfer and energy balance across the canopy. We then evaluated whether changes in BVOC emissions can affect the chemistry of the atmosphere and climate at a regional level. MEGAN was run together with the land surface model (Community Land Model, CLM v4.0) of the Community Earth System Model (CESM v1.0). Results highlighted that tropospheric ozone concentration and air temperature predicted from the model are sensitive to the magnitude of BVOC emissions, thus demonstrating the importance of adopting the proper BEF values for model parameterization.
2011
[1507] Fares, S., D. R. Gentner, J-H. Park, E. Ormeno, J. Karlik, and A. H. Goldstein, "Biogenic emissions from Citrus species in California", Atmospheric Environment, vol. 45, pp. 4557–4568, Sep, 2011.
Link: http://dx.doi.org/10.1016/j.atmosenv.2011.05.066
Abstract
<p>Biogenic Volatile Organic Compounds (BVOC) emitted from plants are the dominant source of reduced carbon chemicals to the atmosphere and are important precursors to the photochemical production of ozone and secondary organic aerosols. Considering the extensive land used for agriculture, cultivated Citrus plantations may play an important role in the chemistry of the atmosphere especially in regions such as the Central Valley of California. Moreover, the BVOC emissions from Citrus species have not been characterized in detail and more species-specific inputs for regional models of BVOC emissions are needed. In this study, we measured the physiological parameters and emissions of the most relevant BVOC (oxygenated compounds, monoterpenes, and sesquiterpenes) for four predominant Citrus species planted in California ( Citrus sinensis var. &#39;Parent Navel&#39;, Citrus limon var. &#39;Meyer&#39;, Citrus reticulata var. &#39;W. Murcott&#39; and &#39;Clementine&#39;). We used two analytical techniques to measure a full range of BVOC emitted: Proton Transfer Reaction Mass Spectrometry (PTR-MS) and gas chromatography with mass spectrometry. Methanol, followed by acetone and acetaldehyde, were the dominant BVOC emitted from lemon and mandarin trees (basal emission rates up to 300 ng(C) g(DW) -1 h -1), while oxygenated monoterpenes, monoterpenes, and sesquiterpenes were the main BVOC emitted from orange trees (basal emission rates up to = 2500 ng(C) g(DW) -1 h -1). Light and temperature-dependent algorithms were better predictors of methanol, acetaldehyde, acetone, isoprene and monoterpenes for all the Citrus species. Whereas, temperature-dependent algorithms were better predictors of oxygenated monoterpenes, and sesquiterpenes. We observed that flowering increased emissions from orange trees by an order of magnitude with the bulk of BVOC emissions being comprised of monoterpenes, sesquiterpenes, and oxygenated monoterpenes. Chemical speciation of BVOC emissions show that the various classes of terpene emissions among all Citrus species are dominated by ocimenes, β-caryophyllene, and linalool, respectively. In addition to utilizing our reported emission factors in BVOC emission models, we recommend that future BVOC emission models consider additional emissions from flowering and harvest, which occur seasonally and may have a significant impact on regional atmospheric chemistry.</p>

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.