Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 6 results
Title [ Year(Asc)]
Filters: Author is Silcock, Patrick  [Clear All Filters]
2014
[1561] Beauchamp, J., E. Zardin, P. Silcock, and P. J. Bremer, "Monitoring photooxidation-induced dynamic changes in the volatile composition of extended shelf life bovine milk by PTR-{MS}", Journal of Mass Spectrometry, vol. 49, pp. 952–958, Sep, 2014.
Link: http://dx.doi.org/10.1002/jms.3430
Abstract
<p>Exposure of milk to light leads to photooxidation and the development of off-flavours. To follow these reactions, semi-skimmed (1.5% fat) and whole (3.8% fat) extended shelf life (ESL) bovine milk samples were exposed to fluorescent light for up to 20 h at room temperature, and the volatiles in the samples&#39; headspace were measured in real time using proton-transfer-reaction mass spectrometry (PTR-MS). Compounds tentatively identified as methanethiol, acetone/propanal, pentanal/octanal/nonanal/1-octen-3-ol, hexanal, diacetyl, dimethyl disulphide, heptanal and benzaldehyde displayed dynamic release profiles relating to the changes occurring in milk upon exposure to light. Copyright &copy; 2014 John Wiley &amp; Sons, Ltd.</p>
2013
[Joyce2013] Joyce, N. I., C. C. Eady, P. Silcock, N. B. Perry, and J. W. { van Klink}, "Fast Phenotyping of LFS-Silenced (Tearless) Onions by Desorption Electrospray Ionization Mass Spectrometry (DESI-MS).", J Agric Food Chem, vol. 61, no. 7: The New Zealand Institute for Plant and Food Research Limited , Private Bag 4704, Christchurch, New Zealand., pp. 1449–1456, Feb, 2013.
Link: http://dx.doi.org/10.1021/jf304444s
Abstract
Fast MS techniques have been applied to the analysis of sulfur volatiles in Allium species and varieties to distinguish phenotypes. Headspace sampling by proton transfer reaction (PTR) MS and surface sampling by desorption electrospray ionization (DESI) MS were used to distinguish lachrymatory factor synthase (LFS)-silenced (tearless; LFS-) onions from normal, LFS-active (tear-inducing; LFS+), onions. PTR-MS showed lower concentrations of the lachrymatory factor (LF, 3) and dipropyl disulfide 12 from tearless onions. DESI-MS of the tearless onions confirmed the decreased LF 3 and revealed much higher concentrations of the sulfenic acid condensates. Using DESI-MS with MS(2) could distinguish zwiebelane ions from thiosulfinate ions. DESI-MS gave reliable fast phenotyping of LFS+ versus LFS- onions by simply scratching leaves and recording the extractable ions for <0.5 min. DESI-MS leaf compound profiles also allowed the rapid distinction of a variety of Allium cultivars to aid plant breeding selections.
[Ting2013] Ting, V. J. L., C. Soukoulis, E. Aprea, P. Silcock, P. Bremer, A. Romano, L. Cappellin, F. Gasperi, and F. Biasioli, "In-vivo volatile organic compound (VOC) release from fresh-cut apple cultivars: PTR-Quad-MS and PTR-ToF-MS", CONFERENCE SERIES, pp. 229, 2013.
Link: http://www.ionicon.com/sites/default/files/uploads/doc/contributions_ptr_ms_Conference_6.pdf
2012
[JLTing2012] Ting, V. J. L., C. Soukoulis, P. Silcock, L. Cappellin, A. Romano, E. Aprea, P. J. Bremer, T. D. Märk, F. Gasperi, and F. Biasioli, "In Vitro and In Vivo Flavor Release from Intact and Fresh-Cut Apple in Relation with Genetic, Textural, and Physicochemical Parameters", Journal of food science, vol. 77, no. 11: Wiley Online Library, pp. C1226–C1233, 2012.
Link: http://onlinelibrary.wiley.com/doi/10.1111/j.1750-3841.2012.02947.x/full
Abstract
Flavor release from 6 commercial apple cultivars (Fuji, Granny Smith, Golden Delicious, Jonagold, Morgen Dallago, and Red Delicious) under static conditions (intact or fresh-cut samples) and during consumption of fresh-cut samples (nosespace) was determined by proton transfer reaction mass spectrometry. Textural (firmness, fracturability, flesh elasticity, and rupture) and physicochemical (pH, acidity, and water content) properties of the apples were also measured. Static headspace analysis of intact fruits revealed Fuji and Granny Smith apples had the lowest concentration for all measured flavor compounds (esters, aldehydes, alcohols, and terpenes), whereas Red Delicious apples had the highest. Fresh-cut samples generally showed a significant increase in total volatile compounds with acetaldehyde being most abundant. However, compared to intact fruits, cut Golden and Red Delicious apples had a lower intensity for ester related peaks. Five parameters were extracted from the nosespace data of peaks related to esters (m/z 43, 61), acetaldehyde (m/z 45), and ethanol (m/z 47): 2 associated with mastication (duration of mastication–tcon; time required for first swallowing event–tswal), and 3 related with in-nose volatile compound concentration (area under the curve–AUC; maximum intensity–Imax; time for achieving Imax–tmax). Three different behaviors were identified in the nosespace data: a) firm samples with low AUC and tswal values (Granny Smith, Fuji), b) mealy samples with high AUC, Imax, tswal values, and low tcon (Morgen Dallago, Golden Delicious), and c) firm samples with high AUC and Imax values (Red Delicious). Strengths and limitations of the methodology are discussed.
[Ting2012] Ting, V. J. L., C. Soukoulis, P. Silcock, L. Cappellin, A. Romano, E. Aprea, P. J. Bremer, T. D. Maerk, F. Gasperi, and F. Biasioli, "In vitro and in vivo flavor release from intact and fresh-cut apple in relation with genetic, textural, and physicochemical parameters.", J Food Sci, vol. 77, no. 11: Research and Innovation Centre, Foundation Edmund Mach, via Mach 1, San Michele all' Adige, (TN), Italy., pp. C1226–C1233, Nov, 2012.
Link: http://dx.doi.org/10.1111/j.1750-3841.2012.02947.x
Abstract
Flavor release from 6 commercial apple cultivars (Fuji, Granny Smith, Golden Delicious, Jonagold, Morgen Dallago, and Red Delicious) under static conditions (intact or fresh-cut samples) and during consumption of fresh-cut samples (nosespace) was determined by proton transfer reaction mass spectrometry. Textural (firmness, fracturability, flesh elasticity, and rupture) and physicochemical (pH, acidity, and water content) properties of the apples were also measured. Static headspace analysis of intact fruits revealed Fuji and Granny Smith apples had the lowest concentration for all measured flavor compounds (esters, aldehydes, alcohols, and terpenes), whereas Red Delicious apples had the highest. Fresh-cut samples generally showed a significant increase in total volatile compounds with acetaldehyde being most abundant. However, compared to intact fruits, cut Golden and Red Delicious apples had a lower intensity for ester related peaks. Five parameters were extracted from the nosespace data of peaks related to esters (m/z 43, 61), acetaldehyde (m/z 45), and ethanol (m/z 47): 2 associated with mastication (duration of mastication-t(con); time required for first swallowing event-t(swal)), and 3 related with in-nose volatile compound concentration (area under the curve-AUC; maximum intensity-I(max); time for achieving I(max)-t(max)). Three different behaviors were identified in the nosespace data: a) firm samples with low AUC and t(swal) values (Granny Smith, Fuji), b) mealy samples with high AUC, I(max), t(swal) values, and low t(con) (Morgen Dallago, Golden Delicious), and c) firm samples with high AUC and I(max) values (Red Delicious). Strengths and limitations of the methodology are discussed. PRACTICAL APPLICATION: Volatile compounds play a fundamental role in the perceived quality of food. Using apple cultivars, this research showed that in vivo proton transfer reaction mass spectrometry (PTR-MS) could be used to determine the relationship between the release of volatile flavor compounds and the physicochemical parameters of a real food matrix. This finding suggests that in vivo PTR-MS coupled with traditional physicochemical measurements could be used to yield information on flavor release from a wide range of food matrices and help in the development of strategies to enhance food flavor and quality.
[Heenan2012] Heenan, S., C. Soukoulis, P. Silcock, A. Fabris, E. Aprea, L. Cappellin, T. D. Märk, F. Gasperi, and F. Biasioli, "PTR-TOF-MS monitoring of in vitro and in vivo flavour release in cereal bars with varying sugar composition", Food chemistry, vol. 131, no. 2: Elsevier, pp. 477–484, 2012.
Link: http://www.sciencedirect.com/science/article/pii/S0308814611012660
Abstract
In the present study, PTR-TOF-MS was applied to better understand the influence of sugar composition on flavour release in a strawberry flavoured cereal bar system. To achieve this, measurements were made both statically from the headspace above cereal bar samples (in vitro) and dynamically from flavour release in the nose space during consumption (in vivo). An artificial strawberry flavour of known constituents (17 flavour active volatile compounds) was used in the preparation of cereal bars. For in vitro measurements, eight samples varying in the glucose syrup solids 42DE to polydextrose ratio were assessed. Measurements clearly showed that the level of glucose syrup solids substitution by polydextrose influenced the release of the added flavour compounds. In addition, distinguishable differences were detected for the release of volatile compounds between samples with different levels of glucose syrup solids and polydextrose during in vivo measurements. The improved mass resolution, sensitivity and speed of PTR-TOF-MS enabled direct comparisons between the rate compounds reached the nose space, maximum nose space concentration of compounds, and the time after which compounds were no longer detected in the nose-space.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.