Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 3 results
Title [ Year(Asc)]
Filters: Author is Fabris, Alessandra  [Clear All Filters]
2012
[Heenan2012] Heenan, S., C. Soukoulis, P. Silcock, A. Fabris, E. Aprea, L. Cappellin, T. D. Märk, F. Gasperi, and F. Biasioli, "PTR-TOF-MS monitoring of in vitro and in vivo flavour release in cereal bars with varying sugar composition", Food chemistry, vol. 131, no. 2: Elsevier, pp. 477–484, 2012.
Link: http://www.sciencedirect.com/science/article/pii/S0308814611012660
Abstract
In the present study, PTR-TOF-MS was applied to better understand the influence of sugar composition on flavour release in a strawberry flavoured cereal bar system. To achieve this, measurements were made both statically from the headspace above cereal bar samples (in vitro) and dynamically from flavour release in the nose space during consumption (in vivo). An artificial strawberry flavour of known constituents (17 flavour active volatile compounds) was used in the preparation of cereal bars. For in vitro measurements, eight samples varying in the glucose syrup solids 42DE to polydextrose ratio were assessed. Measurements clearly showed that the level of glucose syrup solids substitution by polydextrose influenced the release of the added flavour compounds. In addition, distinguishable differences were detected for the release of volatile compounds between samples with different levels of glucose syrup solids and polydextrose during in vivo measurements. The improved mass resolution, sensitivity and speed of PTR-TOF-MS enabled direct comparisons between the rate compounds reached the nose space, maximum nose space concentration of compounds, and the time after which compounds were no longer detected in the nose-space.
2010
[Cappellin2010a] Cappellin, L., F. Biasioli, A. Fabris, E. Schuhfried, C. Soukoulis, T. D. Maerk, and F. Gasperi, "Improved mass accuracy in PTR-TOF-MS: Another step towards better compound identification in PTR-MS", International journal of mass spectrometry, vol. 290, no. 1: Elsevier, pp. 60–63, 2010.
Link: http://www.sciencedirect.com/science/article/pii/S1387380609003571
Abstract
Proton transfer reaction mass spectrometry (PTR-MS) provides on-line monitoring of volatile organic compounds (VOCs) with a low detection threshold and a fast response time. Commercially available set-ups are usually based on quadrupole analysers that, due to the unit mass resolution, do not provide useful analytical information besides the nominal mass of the ions detected. Recently new instruments based on time-of-flight (PTR-TOF-MS) analysers have been proposed and commercialized. They provide higher mass resolution and thus improve the analytical information contained in the spectra. Mass accuracy, however, is an issue that has not been considered in great detail in the published papers on PTR-TOF-MS so far. We show here that the mass accuracy obtained by a commercial apparatus can be improved by proper data analysis. In particular, internal calibration based on an improved algorithm allows for a mass accuracy that suffices for elemental determination in the most common situations. Achieving good mass accuracy is a fundamental step for further exploiting the analytical potential of PTR-MS.
[Fabris2010] Fabris, A., F. Biasioli, P. M. Granitto, E. Aprea, L. Cappellin, E. Schuhfried, C. Soukoulis, T. D. Maerk, F. Gasperi, and I. Endrizzi, "PTR-TOF-MS and data-mining methods for rapid characterisation of agro-industrial samples: influence of milk storage conditions on the volatile compounds profile of Trentingrana cheese.", J Mass Spectrom, vol. 45, no. 9: IASMA Research and Innovation Centre, Fondazione Edmund Mach, Food Quality and Nutrition Area, Via E. Mach, 1, 38010, S. Michele a/A, Italy., pp. 1065–1074, Sep, 2010.
Link: http://onlinelibrary.wiley.com/doi/10.1002/jms.1797/abstract
Abstract
Proton transfer reaction-mass spectrometry (PTR-MS), a direct injection mass spectrometric technique based on an efficient implementation of chemical ionisation, allows for fast and high-sensitivity monitoring of volatile organic compounds (VOCs). The first implementations of PTR-MS, based on quadrupole mass analyzers (PTR-Quad-MS), provided only the nominal mass of the ions measured and thus little chemical information. To partially overcome these limitations and improve the analytical capability of this technique, the coupling of proton transfer reaction ionisation with a time-of-flight mass analyser has been recently realised and commercialised (PTR-TOF-MS). Here we discuss the very first application of this new instrument to agro-industrial problems and dairy science in particular. As a case study, we show here that the rapid PTR-TOF-MS fingerprinting coupled with data-mining methods can quickly verify whether the storage condition of the milk affects the final quality of cheese and we provide relevant examples of better compound identification in comparison with the previous PTR-MS implementations. In particular, 'Trentingrana' cheese produced by four different procedures for milk storage are compared both in the case of winter and summer production. It is indeed possible to set classification models with low prediction errors and to identify the chemical formula of the ion peaks used for classification, providing evidence of the role that this novel spectrometric technique can play for fundamental and applied agro-industrial themes.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.