Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 2 results
Title [ Year(Asc)]
Filters: Author is Franz Schinner  [Clear All Filters]
2008
[Bunge2008] Bunge, M., N. Araghipour, T. Mikoviny, J. Dunkl, R. Schnitzhofer, A. Hansel, F. Schinner, A. Wisthaler, R. Margesin, and T. D. Maerk, "On-Line Monitoring of Microbial Volatile Metabolites by Proton Transfer Reaction-Mass Spectrometry", Applied and Environmental Microbiology, vol. 74, no. 7, pp. 2179–2186, 2008.
Link: http://aem.asm.org/content/74/7/2179
Abstract
A method for analysis of volatile organic compounds (VOCs) from microbial cultures was established using proton transfer reaction-mass spectrometry (PTR-MS). A newly developed sampling system was coupled to a PTR-MS instrument to allow on-line monitoring of VOCs in the dynamic headspaces of microbial cultures. The novel PTR-MS method was evaluated for four reference organisms: Escherichia coli, Shigella flexneri, Salmonella enterica, and Candida tropicalis. Headspace VOCs in sampling bottles containing actively growing cultures and uninoculated culture medium controls were sequentially analyzed by PTR-MS. Characteristic marker ions were found for certain microbial cultures: C. tropicalis could be identified by several unique markers compared with the other three organisms, and E. coli and S. enterica were distinguishable from each other and from S. flexneri by specific marker ions, demonstrating the potential of this method to differentiate between even closely related microorganisms. Although the temporal profiles of some VOCs were similar to the growth dynamics of the microbial cultures, most VOCs showed a different temporal profile, characterized by constant or decreasing VOC levels or by single or multiple peaks over 24 h of incubation. These findings strongly indicate that the temporal evolution of VOC emissions during growth must be considered if characterization or differentiation based on microbial VOC emissions is attempted. Our study may help to establish the analysis of VOCs by on-line PTR-MS as a routine method in microbiology and as a tool for monitoring environmental and biotechnological processes.
2007
[Bunge2007] Bunge, M., N. Araghipour, T. Mikoviny, J. Dunkl, A. Hansel, A. Wisthaler, F. Schinner, T. D. Maerk, and R. Margesin, "An On-line PTR-MS System for the Sensitive Real-time Detection of Volatile Metabolites from Microbial Cultures", International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications, vol. 3, 2007.
Link: http://www.ionicon.com/sites/default/files/uploads/doc/contributions_ptr_ms_Conference_3.pdf
Abstract
AN ON-LINE PTR-MS SYSTEM FOR THE SENSITIVE REAL-TIME DETECTION OF VOLATILE METABOLITES FROM MICROBIAL CULTURES

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.