Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 1 results
Title [ Year(Asc)]
Filters: Author is {Le Quéré}, Jean-Luc  [Clear All Filters]
2013
[1590] Déléris, I., A. Saint-Eve, E. Sémon, H. Guillemin, E. Guichard, I. Souchon, and J-L. { Le Quéré}, "Comparison of direct mass spectrometry methods for the on-line analysis of volatile compounds in foods.", J Mass Spectrom, vol. 48, pp. 594–607, May, 2013.
Link: http://dx.doi.org/10.1002/jms.3199
Abstract
<p>For the on-line monitoring of flavour compound release, atmospheric pressure chemical ionization (APCI) and proton transfer reaction (PTR) combined to mass spectrometry (MS) are the most often used ionization technologies. APCI-MS was questioned for the quantification of volatiles in complex mixtures, but direct comparisons of APCI and PTR techniques applied on the same samples remain scarce. The aim of this work was to compare the potentialities of both techniques for the study of in vitro and in vivo flavour release. Aroma release from flavoured aqueous solutions (in vitro measurements in Teflon bags and glass vials) or flavoured candies (in vivo measurements on six panellists) was studied using APCI- and PTR-MS. Very similar results were obtained with both techniques. Their sensitivities, expressed as limit of detection of 2,5-dimethylpyrazine, were found equivalent at 12&thinsp;ng/l air. Analyses of Teflon bag headspace revealed a poor repeatability and important ionization competitions with both APCI- and PTR-MS, particularly between an ester and a secondary alcohol. These phenomena were attributed to dependency on moisture content, gas/liquid volume ratio, proton affinities and product ion distribution, together with inherent drawbacks of Teflon bags (adsorption, condensation of water and polar molecules). Concerning the analyses of vial headspace and in vivo analyses, similar results were obtained with both techniques, revealing no competition phenomena. This study highlighted the equivalent performances of APCI-MS and PTR-MS for in vitro and in vivo flavour release investigations and provided useful data on the problematic use of sample bags for headspace analyses.</p>

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.