Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 2 results
Title [ Year(Asc)]
Filters: Author is Jimenez, J. L.  [Clear All Filters]
2013
[1513] Holzinger, R.., A.. H. Goldstein, P.. L. Hayes, J.. L. Jimenez, and J.. Timkovsky, "Chemical evolution of organic aerosol in Los Angeles during the CalNex 2010 study", Atmospheric Chemistry and Physics, vol. 13, pp. 10125–10141, Oct, 2013.
Link: http://dx.doi.org/10.5194/acp-13-10125-2013
Abstract
<p>During the CalNex study (15 May to 16 June 2010) a large suite of instruments was operated at the Los Angeles area ground supersite to characterize the sources and atmospheric processing of atmospheric pollution. The thermal-desorption proton-transfer-reaction mass-spectrometer (TD-PTR-MS) was deployed to an urban area for the first time and detected 691 organic ions in aerosol samples, the mean total concentration of which was estimated as 3.3 μg m&minus;3. Based on comparison to total organic aerosol (OA) measurements, we estimate that approximately 50% of the OA mass at this site was directly measured by the TD-PTR-MS. Based on correlations with aerosol mass spectrometer (AMS) OA components, the ions were grouped to represent hydrocarbon-like OA (HOA), local OA (LOA), semi-volatile oxygenated OA (SV-OOA), and low volatility oxygenated OA (LV-OOA). Mass spectra and thermograms of the ion groups are mostly consistent with the assumed sources and/or photochemical origin of the OA components. The mass spectra of ions representing the primary components HOA and LOA included the highest m/z, consistent with their higher resistance to thermal decomposition, and they were volatilized at lower temperatures (&nbsp; 150 &deg;C). Photochemical ageing weakens C-C bond strengths (also resulting in chemical fragmentation), and produces species of lower volatility (through the addition of functional groups). Accordingly the mass spectra of ions representing the oxidized OA components (SV-OOA, and LV-OOA) lack the highest masses and they are volatilized at higher temperatures (250&ndash;300 &deg;C). Chemical parameters like mean carbon number (nC), mean carbon oxidation state (OSC), and the atomic ratios O / C and H / C of the ion groups are consistent with the expected sources and photochemical processing of the aerosol components. Our data suggest that chemical fragmentation gains importance over functionalization as photochemical age of OA increases. Surprisingly, the photochemical age of OA decreases during the daytime hours, demonstrating the importance of rapid production of new (photochemically young) SV-OOA during daytime. The PTR detects higher organic N concentrations than the AMS, the reasons for which are not well understood and cannot be explained by known artifacts related to PTR or the AMS. The median atomic N / C ratio (6.4%) of the ion group representing LV-OOA is a factor 2 higher than N / C of any other ion group. This suggests a multiphase chemical source involving ammonium ions is contributing to LV-OOA.</p>
2011
[1508] Worton, D.. R., A.. H. Goldstein, D.. K. Farmer, K.. S. Docherty, J.. L. Jimenez, J.. B. Gilman, W.. C. Kuster, J.. de Gouw, B.. J. Williams, N.. M. Kreisberg, et al., "Origins and composition of fine atmospheric carbonaceous aerosol in the Sierra Nevada Mountains, California", Atmospheric Chemistry and Physics, vol. 11, pp. 10219–10241, Oct, 2011.
Link: http://nature.berkeley.edu/ahg/pubs/Worton et al acp-11-10219-2011.pdf
Abstract
<p>In this paper we report chemically resolved measurements of organic aerosol (OA) and related tracers during the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX) at the Blodgett Forest Research Station, California from 15 August&ndash;10 October 2007. OA contributed the majority of the mass to the fine atmospheric particles and was predominately oxygenated (OOA). The highest concentrations of OA were during sporadic wildfire influence when aged plumes were impacting the site. In situ measurements of particle phase molecular markers were dominated by secondary compounds and along with gas phase compounds could be categorized into six factors or sources: (1) aged biomass burning emissions and oxidized urban emissions, (2) oxidized urban emissions (3) oxidation products of monoterpene emissions, (4) monoterpene emissions, (5) anthropogenic emissions and (6) local methyl chavicol emissions and oxidation products. There were multiple biogenic components that contributed to OA at this site whose contributions varied diurnally, seasonally and in response to changing meteorological conditions, e.g. temperature and precipitation events. Concentrations of isoprene oxidation products were larger when temperatures were higher during the first half of the campaign (15 August&ndash;12 September) due to more substantial emissions of isoprene and enhanced photochemistry. The oxidation of methyl chavicol, an oxygenated terpene emitted by ponderosa pine trees, contributed similarly to OA throughout the campaign. In contrast, the abundances of monoterpene oxidation products in the particle phase were greater during the cooler conditions in the latter half of the campaign (13 September&ndash;10 October), even though emissions of the precursors were lower, although the mechanism is not known. OA was correlated with the anthropogenic tracers 2-propyl nitrate and carbon monoxide (CO), consistent with previous observations, while being comprised of mostly non-fossil carbon (&gt;75%). The correlation between OA and an anthropogenic tracer does not necessarily identify the source of the carbon as being anthropogenic but instead suggests a coupling between the anthropogenic and biogenic components in the air mass that might be related to the source of the oxidant and/or the aerosol sulfate. Observations of organosulfates of isoprene and α-pinene provided evidence for the likely importance of aerosol sulfate in spite of neutralized aerosol although acidic plumes might have played a role upwind of the site. This is in contrast to laboratory studies where strongly acidic seed aerosols were needed in order to form these compounds. These compounds together represented only a minor fraction (&lt;1%) of the total OA mass, which may be the result of the neutralized aerosol at the site or because only a small number of organosulfates were quantified. The low contribution of organosulfates to total OA suggests that other mechanisms, e.g. NOx enhancement of oxidant levels, are likely responsible for the majority of the anthropogenic enhancement of biogenic secondary organic aerosol observed at this site.</p>

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.