Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 1 results
Title [ Year(Asc)]
Filters: Author is Ferrigno, Antonella  [Clear All Filters]
2011
[Schuhfried2011] Schuhfried, E., F. Biasioli, E. Aprea, L. Cappellin, C. Soukoulis, A. Ferrigno, T. D. Maerk, and F. Gasperi, "PTR-MS measurements and analysis of models for the calculation of Henry's law constants of monosulfides and disulfides.", Chemosphere, vol. 83, no. 3: Institut fuer Ionenphysik und Angewandte Physik, Leopold Franzens Universitaet Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria., pp. 311–317, Apr, 2011.
Link: http://dx.doi.org/10.1016/j.chemosphere.2010.12.051
Abstract
Sulfides are known for their strong odor impact even at very low concentrations. Here, we report Henry's law constants (HLCs) measured at the nanomolar concentration range in water for monosulfides (dimethylsulfide, ethylmethylsulfide, diethylsulfide, allylmethylsulfide) and disulfides (dimethyldisulfide, diethylsulfide, dipropylsulfide) using a dynamic stripping technique coupled to Proton Transfer Reaction-Mass Spectrometry (PTR-MS). The experimental data were compared with literature values and to vapor/solubility calculations and their consistency was confirmed employing the extra-thermodynamic enthalpy-entropy compensation effect. Our experimental data are compatible with reported literature values, and they are typically lower than averaged experimental literature values by about 10%. Critical comparison with other freely available models (modeled vapor/solubility; group and bond additivity methods; Linear Solvation Energy Relationship; SPARC) was performed to validate their applicability to monosulfides and disulfides. Evaluation of theoretical models reveals a large deviation from our measured values by up to four times (in units of Matm(-1)). Two group contribution models were adjusted in view of the new data, and HLCs for a list of sulfur compounds were calculated. Based on our findings we recommend the evaluation and adaption of theoretical models for monosulfides and disulfides to lower values of solubility and higher values of fugacity.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.